M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52, 230–240 (2014).

[CrossRef]

M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20, 23463–23479 (2012).

[CrossRef]

X. Zhou, A. Gh. Podoleanu, Z. Yang, T. Yang, and H. Zhao, “Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns,” Opt. Express 20, 24247–24262 (2012).

[CrossRef]

Q. He, Y. Liu, and F. Kong, “Machine fault signature analysis by midpoint based empirical mode decomposition,” Meas. Sci. Technol. 22, 015702 (2011).

[CrossRef]

M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt. 50, 5513–5523 (2011).

[CrossRef]

K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express 19, 26065–26078 (2011).

[CrossRef]

K. Patorski, K. Pokorski, and M. Wielgus, “Information retrieval from amplitude modulated fringe patterns using single frame processing methods,” Proc. SPIE 8338, 833802 (2011).

[CrossRef]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using two-dimensional continuous wavelet transform,” Opt. Commun. 266, 482–489 (2006).

[CrossRef]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704 (2005).

[CrossRef]

P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode decomposition as a filterbank,” IEEE Signal Process. Lett. 11, 112–114 (2004).

[CrossRef]

Z. Wu and N. E. Huang, “A study of the characteristics of white noise using the empirical mode decomposition method,” Proc. R. Soc. A 460, 1597–1611 (2004).

[CrossRef]

J. Zhong and J. Weng, “Dilating Gabor transform for the fringe analysis of 3-D shape measurement,” Opt. Eng. 43, 895–899 (2004).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).

[CrossRef]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21, 1019–1026 (2003).

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt. 42, 7066–7071 (2003).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

K. Patorski and A. Olszak, “Digital in-plane electronic speckle pattern shearing interferometry,” Opt. Eng. 36, 2010–2015 (1997).

[CrossRef]

S. M. Bhuiyan, R. R. Adhami, and J. F. Khan, “A novel approach of fast and adaptive bidimensional empirical mode decomposition,” Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2008), pp. 1313–1316.

M. Wielgus, A. Antoniewicz, M. Bartyś, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion,” in Proceedings of 15th International Conference on Information Fusion FUSION 2012 (2012), pp. 649–654.

M. Wielgus, A. Antoniewicz, M. Bartyś, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion,” in Proceedings of 15th International Conference on Information Fusion FUSION 2012 (2012), pp. 649–654.

S. M. Bhuiyan, R. R. Adhami, and J. F. Khan, “A novel approach of fast and adaptive bidimensional empirical mode decomposition,” Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2008), pp. 1313–1316.

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21, 1019–1026 (2003).

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21, 1019–1026 (2003).

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using two-dimensional continuous wavelet transform,” Opt. Commun. 266, 482–489 (2006).

[CrossRef]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704 (2005).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21, 1019–1026 (2003).

P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode decomposition as a filterbank,” IEEE Signal Process. Lett. 11, 112–114 (2004).

[CrossRef]

Q. He, R. X. Gao, and P. Freedson, “Midpoint-based empirical decomposition for nonlinear trend estimation,” Proceedings of IEEE Engineering in Medicine and Biology Society (IEEE, 2009), pp. 2228–2231.

Q. He, R. X. Gao, and P. Freedson, “Midpoint-based empirical decomposition for nonlinear trend estimation,” Proceedings of IEEE Engineering in Medicine and Biology Society (IEEE, 2009), pp. 2228–2231.

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using two-dimensional continuous wavelet transform,” Opt. Commun. 266, 482–489 (2006).

[CrossRef]

P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode decomposition as a filterbank,” IEEE Signal Process. Lett. 11, 112–114 (2004).

[CrossRef]

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

Q. He, Y. Liu, and F. Kong, “Machine fault signature analysis by midpoint based empirical mode decomposition,” Meas. Sci. Technol. 22, 015702 (2011).

[CrossRef]

Q. He, R. X. Gao, and P. Freedson, “Midpoint-based empirical decomposition for nonlinear trend estimation,” Proceedings of IEEE Engineering in Medicine and Biology Society (IEEE, 2009), pp. 2228–2231.

Z. Wu and N. E. Huang, “A study of the characteristics of white noise using the empirical mode decomposition method,” Proc. R. Soc. A 460, 1597–1611 (2004).

[CrossRef]

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

S. M. Bhuiyan, R. R. Adhami, and J. F. Khan, “A novel approach of fast and adaptive bidimensional empirical mode decomposition,” Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2008), pp. 1313–1316.

Q. He, Y. Liu, and F. Kong, “Machine fault signature analysis by midpoint based empirical mode decomposition,” Meas. Sci. Technol. 22, 015702 (2011).

[CrossRef]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using two-dimensional continuous wavelet transform,” Opt. Commun. 266, 482–489 (2006).

[CrossRef]

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

Q. He, Y. Liu, and F. Kong, “Machine fault signature analysis by midpoint based empirical mode decomposition,” Meas. Sci. Technol. 22, 015702 (2011).

[CrossRef]

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704 (2005).

[CrossRef]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21, 1019–1026 (2003).

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21, 1019–1026 (2003).

K. Patorski and A. Olszak, “Digital in-plane electronic speckle pattern shearing interferometry,” Opt. Eng. 36, 2010–2015 (1997).

[CrossRef]

M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52, 230–240 (2014).

[CrossRef]

M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20, 23463–23479 (2012).

[CrossRef]

M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt. 50, 5513–5523 (2011).

[CrossRef]

K. Patorski, K. Pokorski, and M. Wielgus, “Information retrieval from amplitude modulated fringe patterns using single frame processing methods,” Proc. SPIE 8338, 833802 (2011).

[CrossRef]

K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express 19, 26065–26078 (2011).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

K. Patorski and A. Olszak, “Digital in-plane electronic speckle pattern shearing interferometry,” Opt. Eng. 36, 2010–2015 (1997).

[CrossRef]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704 (2005).

[CrossRef]

K. Patorski, K. Pokorski, and M. Wielgus, “Information retrieval from amplitude modulated fringe patterns using single frame processing methods,” Proc. SPIE 8338, 833802 (2011).

[CrossRef]

K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express 19, 26065–26078 (2011).

[CrossRef]

M. Wielgus, A. Antoniewicz, M. Bartyś, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion,” in Proceedings of 15th International Conference on Information Fusion FUSION 2012 (2012), pp. 649–654.

D. W. Robinson and G. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement (Institute of Physics, 1993).

P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode decomposition as a filterbank,” IEEE Signal Process. Lett. 11, 112–114 (2004).

[CrossRef]

D. W. Robinson and G. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement (Institute of Physics, 1993).

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1990), Vol. 28, pp. 271–359.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52, 230–240 (2014).

[CrossRef]

M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20, 23463–23479 (2012).

[CrossRef]

K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express 19, 26065–26078 (2011).

[CrossRef]

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

J. Zhong and J. Weng, “Dilating Gabor transform for the fringe analysis of 3-D shape measurement,” Opt. Eng. 43, 895–899 (2004).

[CrossRef]

M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52, 230–240 (2014).

[CrossRef]

M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20, 23463–23479 (2012).

[CrossRef]

M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt. 50, 5513–5523 (2011).

[CrossRef]

K. Patorski, K. Pokorski, and M. Wielgus, “Information retrieval from amplitude modulated fringe patterns using single frame processing methods,” Proc. SPIE 8338, 833802 (2011).

[CrossRef]

M. Wielgus, A. Antoniewicz, M. Bartyś, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion,” in Proceedings of 15th International Conference on Information Fusion FUSION 2012 (2012), pp. 649–654.

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

Z. Wu and N. E. Huang, “A study of the characteristics of white noise using the empirical mode decomposition method,” Proc. R. Soc. A 460, 1597–1611 (2004).

[CrossRef]

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

J. Zhong and J. Weng, “Dilating Gabor transform for the fringe analysis of 3-D shape measurement,” Opt. Eng. 43, 895–899 (2004).

[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47, 2592–2598 (2008).

[CrossRef]

M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt. 50, 5513–5523 (2011).

[CrossRef]

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt. 42, 7066–7071 (2003).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).

[CrossRef]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704 (2005).

[CrossRef]

P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode decomposition as a filterbank,” IEEE Signal Process. Lett. 11, 112–114 (2004).

[CrossRef]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput. 21, 1019–1026 (2003).

Q. He, Y. Liu, and F. Kong, “Machine fault signature analysis by midpoint based empirical mode decomposition,” Meas. Sci. Technol. 22, 015702 (2011).

[CrossRef]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using two-dimensional continuous wavelet transform,” Opt. Commun. 266, 482–489 (2006).

[CrossRef]

J. Zhong and J. Weng, “Dilating Gabor transform for the fringe analysis of 3-D shape measurement,” Opt. Eng. 43, 895–899 (2004).

[CrossRef]

K. Patorski and A. Olszak, “Digital in-plane electronic speckle pattern shearing interferometry,” Opt. Eng. 36, 2010–2015 (1997).

[CrossRef]

K. Patorski, K. Pokorski, and M. Trusiak, “Fourier domain interpretation of real and pseudo-moiré phenomena,” Opt. Express 19, 26065–26078 (2011).

[CrossRef]

M. Trusiak, K. Patorski, and M. Wielgus, “Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform,” Opt. Express 20, 23463–23479 (2012).

[CrossRef]

X. Zhou, A. Gh. Podoleanu, Z. Yang, T. Yang, and H. Zhao, “Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns,” Opt. Express 20, 24247–24262 (2012).

[CrossRef]

M. Trusiak, M. Wielgus, and K. Patorski, “Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition,” Opt. Lasers Eng. 52, 230–240 (2014).

[CrossRef]

L. R. Watkins, S. M. Tan, and T. H. Barnes, “Determination of interferometer phase distribution by use of wavelets,” Opt. Lett. 24, 905–907 (1999).

[CrossRef]

S. Ozder, O. Kocahan, E. Coskun, and H. Goktas, “Optical phase distribution evaluation by using an S-transform,” Opt. Lett. 32, 591–593 (2007).

Z. Wu and N. E. Huang, “A study of the characteristics of white noise using the empirical mode decomposition method,” Proc. R. Soc. A 460, 1597–1611 (2004).

[CrossRef]

N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

K. Patorski, K. Pokorski, and M. Wielgus, “Information retrieval from amplitude modulated fringe patterns using single frame processing methods,” Proc. SPIE 8338, 833802 (2011).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1990), Vol. 28, pp. 271–359.

D. W. Robinson and G. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement (Institute of Physics, 1993).

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).

Q. He, R. X. Gao, and P. Freedson, “Midpoint-based empirical decomposition for nonlinear trend estimation,” Proceedings of IEEE Engineering in Medicine and Biology Society (IEEE, 2009), pp. 2228–2231.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

S. M. Bhuiyan, R. R. Adhami, and J. F. Khan, “A novel approach of fast and adaptive bidimensional empirical mode decomposition,” Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2008), pp. 1313–1316.

M. Wielgus, A. Antoniewicz, M. Bartyś, and B. Putz, “Fast and adaptive bidimensional empirical mode decomposition for the real-time video fusion,” in Proceedings of 15th International Conference on Information Fusion FUSION 2012 (2012), pp. 649–654.