Abstract

New polymers applicable for optoelectronics are developed and investigated. The ability to form photoinduced anisotropy in the media based on the films of these polymers is demonstrated. The media can be used for recording of polarization-sensitive diffraction gratings.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kobsa, “Rearrangement of aromatic esters by ultraviolet radiation,” J. Org. Chem. 27, 2293–2298 (1962).
  2. J. C. Anderson and C. B. Reese, “Photo-induced Fries rearrangements,” Proc. Anal. Div. Chem. Soc. 217, 213 (1960).
  3. J. Frechet and T. Tessier, “Poly[p-(formyloxy)styrene]: synthesis and radiation-induced decarbonylation,” Macromolecules 18, 317–321 (1985).
    [CrossRef]
  4. S. Li and J. Guillet, “Studies of the photo-Fries reaction in solid poly(phenyl acrylate),” Macromolecules 10, 840–844 (1977).
    [CrossRef]
  5. L. Merle-Aubry, D. Holden, Y. Merle, and J. Guillet, “Photophysics and photochemistry of naphthly ester polymers in solution,” Macromolecules 13, 1138–1143 (1980).
    [CrossRef]
  6. T. Hofler, T. Grieber, X. Gstrein, G. Trimmel, G. Jakopic, and W. Kern, “UV reactive polymers for refractive index modulation based on the photo-Fries rearrangement,” Polymer 48, 1930–1939 (2007).
    [CrossRef]
  7. A. Gupta, R. Liang, J. Moacanin, R. Goldbeck, and D. Kliger, “Photochemical processes in polymeric systems” 2. “Photochemistry of a polycarbonate of bisphenol A in solution and in the solid phase,” Macromolecules 13, 262–267 (1980).
    [CrossRef]
  8. S. Vallon, B. Drevillon, F. Poncin-Epaillard, J. E. Klemberg-Sapieha, and L. Martinu, “Argon plasma treatment of polycarbonate: in situ spectroellipsometry study and polymer characterizations,” J. Vac. Sci. Technol. A 14, 3194–3201 (1996).
    [CrossRef]
  9. V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).
  10. L. Vretik, V. Syromyatnikov, V. Zagniy, E. Savchuk, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 237, 57–65 (2008).
  11. L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).
  12. L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, and O. Yaroshchuk, “New photoalignment materials in LCDs development: liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst. 468, 173–179 (2007).
  13. V. Kyrychenko, G. Smolyakov, V. Zagniy, L. Vretik, L. Paskal, V. Syromyatnikov, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 496, 278–292 (2008).
  14. L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).
  15. T. Griesser, T. Höfler, G. Jakopiec, M. Belzik, W. Kern, and G. Trimmel, “Refractive index modulation in polymers bearing photoreactive phenyl and naphthyl ester units using different UV wavelengths,” J. Mater. Chem. 19, 4557–4565 (2009).
    [CrossRef]
  16. T. Griesser, J.-C. Kuhlmann, M. Wieser, W. Kern, and G. Trimmel, “UV induced modulation of the refractive index and the surface properties of photoreactive polymers bearing N-phenylamide groups,” Macromolecules 42, 725–731 (2009).
    [CrossRef]
  17. J. Klepp, C. Pruner, Y. Tomita, K. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100, 214104 (2012).
    [CrossRef]
  18. L. Vretik, O. Yaroshchuk, V. Zagniy, V. Kyrychenko, and V. Syromyatnikov, Liquid Crystalline Organic Compounds and Polymers as Materials of the XXI Century: From Synthesis To Applications, A. Iwan, ed. (Transworld Research Network, 2011), pp. 153–190.

2012 (1)

J. Klepp, C. Pruner, Y. Tomita, K. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100, 214104 (2012).
[CrossRef]

2011 (1)

L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).

2009 (2)

T. Griesser, T. Höfler, G. Jakopiec, M. Belzik, W. Kern, and G. Trimmel, “Refractive index modulation in polymers bearing photoreactive phenyl and naphthyl ester units using different UV wavelengths,” J. Mater. Chem. 19, 4557–4565 (2009).
[CrossRef]

T. Griesser, J.-C. Kuhlmann, M. Wieser, W. Kern, and G. Trimmel, “UV induced modulation of the refractive index and the surface properties of photoreactive polymers bearing N-phenylamide groups,” Macromolecules 42, 725–731 (2009).
[CrossRef]

2008 (2)

L. Vretik, V. Syromyatnikov, V. Zagniy, E. Savchuk, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 237, 57–65 (2008).

V. Kyrychenko, G. Smolyakov, V. Zagniy, L. Vretik, L. Paskal, V. Syromyatnikov, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 496, 278–292 (2008).

2007 (3)

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, and O. Yaroshchuk, “New photoalignment materials in LCDs development: liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst. 468, 173–179 (2007).

T. Hofler, T. Grieber, X. Gstrein, G. Trimmel, G. Jakopic, and W. Kern, “UV reactive polymers for refractive index modulation based on the photo-Fries rearrangement,” Polymer 48, 1930–1939 (2007).
[CrossRef]

2001 (1)

V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).

1996 (1)

S. Vallon, B. Drevillon, F. Poncin-Epaillard, J. E. Klemberg-Sapieha, and L. Martinu, “Argon plasma treatment of polycarbonate: in situ spectroellipsometry study and polymer characterizations,” J. Vac. Sci. Technol. A 14, 3194–3201 (1996).
[CrossRef]

1985 (1)

J. Frechet and T. Tessier, “Poly[p-(formyloxy)styrene]: synthesis and radiation-induced decarbonylation,” Macromolecules 18, 317–321 (1985).
[CrossRef]

1980 (2)

L. Merle-Aubry, D. Holden, Y. Merle, and J. Guillet, “Photophysics and photochemistry of naphthly ester polymers in solution,” Macromolecules 13, 1138–1143 (1980).
[CrossRef]

A. Gupta, R. Liang, J. Moacanin, R. Goldbeck, and D. Kliger, “Photochemical processes in polymeric systems” 2. “Photochemistry of a polycarbonate of bisphenol A in solution and in the solid phase,” Macromolecules 13, 262–267 (1980).
[CrossRef]

1977 (1)

S. Li and J. Guillet, “Studies of the photo-Fries reaction in solid poly(phenyl acrylate),” Macromolecules 10, 840–844 (1977).
[CrossRef]

1962 (1)

H. Kobsa, “Rearrangement of aromatic esters by ultraviolet radiation,” J. Org. Chem. 27, 2293–2298 (1962).

1960 (1)

J. C. Anderson and C. B. Reese, “Photo-induced Fries rearrangements,” Proc. Anal. Div. Chem. Soc. 217, 213 (1960).

Anderson, J. C.

J. C. Anderson and C. B. Reese, “Photo-induced Fries rearrangements,” Proc. Anal. Div. Chem. Soc. 217, 213 (1960).

Belzik, M.

T. Griesser, T. Höfler, G. Jakopiec, M. Belzik, W. Kern, and G. Trimmel, “Refractive index modulation in polymers bearing photoreactive phenyl and naphthyl ester units using different UV wavelengths,” J. Mater. Chem. 19, 4557–4565 (2009).
[CrossRef]

Dolgov, L.

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, and O. Yaroshchuk, “New photoalignment materials in LCDs development: liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst. 468, 173–179 (2007).

Drevillon, B.

S. Vallon, B. Drevillon, F. Poncin-Epaillard, J. E. Klemberg-Sapieha, and L. Martinu, “Argon plasma treatment of polycarbonate: in situ spectroellipsometry study and polymer characterizations,” J. Vac. Sci. Technol. A 14, 3194–3201 (1996).
[CrossRef]

Fally, M.

J. Klepp, C. Pruner, Y. Tomita, K. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100, 214104 (2012).
[CrossRef]

Frechet, J.

J. Frechet and T. Tessier, “Poly[p-(formyloxy)styrene]: synthesis and radiation-induced decarbonylation,” Macromolecules 18, 317–321 (1985).
[CrossRef]

Gavrilko, T.

L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).

Geltenbort, K.

J. Klepp, C. Pruner, Y. Tomita, K. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100, 214104 (2012).
[CrossRef]

Goldbeck, R.

A. Gupta, R. Liang, J. Moacanin, R. Goldbeck, and D. Kliger, “Photochemical processes in polymeric systems” 2. “Photochemistry of a polycarbonate of bisphenol A in solution and in the solid phase,” Macromolecules 13, 262–267 (1980).
[CrossRef]

Grieber, T.

T. Hofler, T. Grieber, X. Gstrein, G. Trimmel, G. Jakopic, and W. Kern, “UV reactive polymers for refractive index modulation based on the photo-Fries rearrangement,” Polymer 48, 1930–1939 (2007).
[CrossRef]

Griesser, T.

T. Griesser, T. Höfler, G. Jakopiec, M. Belzik, W. Kern, and G. Trimmel, “Refractive index modulation in polymers bearing photoreactive phenyl and naphthyl ester units using different UV wavelengths,” J. Mater. Chem. 19, 4557–4565 (2009).
[CrossRef]

T. Griesser, J.-C. Kuhlmann, M. Wieser, W. Kern, and G. Trimmel, “UV induced modulation of the refractive index and the surface properties of photoreactive polymers bearing N-phenylamide groups,” Macromolecules 42, 725–731 (2009).
[CrossRef]

Gstrein, X.

T. Hofler, T. Grieber, X. Gstrein, G. Trimmel, G. Jakopic, and W. Kern, “UV reactive polymers for refractive index modulation based on the photo-Fries rearrangement,” Polymer 48, 1930–1939 (2007).
[CrossRef]

Guillet, J.

L. Merle-Aubry, D. Holden, Y. Merle, and J. Guillet, “Photophysics and photochemistry of naphthly ester polymers in solution,” Macromolecules 13, 1138–1143 (1980).
[CrossRef]

S. Li and J. Guillet, “Studies of the photo-Fries reaction in solid poly(phenyl acrylate),” Macromolecules 10, 840–844 (1977).
[CrossRef]

Gupta, A.

A. Gupta, R. Liang, J. Moacanin, R. Goldbeck, and D. Kliger, “Photochemical processes in polymeric systems” 2. “Photochemistry of a polycarbonate of bisphenol A in solution and in the solid phase,” Macromolecules 13, 262–267 (1980).
[CrossRef]

Hofler, T.

T. Hofler, T. Grieber, X. Gstrein, G. Trimmel, G. Jakopic, and W. Kern, “UV reactive polymers for refractive index modulation based on the photo-Fries rearrangement,” Polymer 48, 1930–1939 (2007).
[CrossRef]

Höfler, T.

T. Griesser, T. Höfler, G. Jakopiec, M. Belzik, W. Kern, and G. Trimmel, “Refractive index modulation in polymers bearing photoreactive phenyl and naphthyl ester units using different UV wavelengths,” J. Mater. Chem. 19, 4557–4565 (2009).
[CrossRef]

Holden, D.

L. Merle-Aubry, D. Holden, Y. Merle, and J. Guillet, “Photophysics and photochemistry of naphthly ester polymers in solution,” Macromolecules 13, 1138–1143 (1980).
[CrossRef]

Jakopic, G.

T. Hofler, T. Grieber, X. Gstrein, G. Trimmel, G. Jakopic, and W. Kern, “UV reactive polymers for refractive index modulation based on the photo-Fries rearrangement,” Polymer 48, 1930–1939 (2007).
[CrossRef]

Jakopiec, G.

T. Griesser, T. Höfler, G. Jakopiec, M. Belzik, W. Kern, and G. Trimmel, “Refractive index modulation in polymers bearing photoreactive phenyl and naphthyl ester units using different UV wavelengths,” J. Mater. Chem. 19, 4557–4565 (2009).
[CrossRef]

Jo, J. H.

V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).

Kern, W.

T. Griesser, T. Höfler, G. Jakopiec, M. Belzik, W. Kern, and G. Trimmel, “Refractive index modulation in polymers bearing photoreactive phenyl and naphthyl ester units using different UV wavelengths,” J. Mater. Chem. 19, 4557–4565 (2009).
[CrossRef]

T. Griesser, J.-C. Kuhlmann, M. Wieser, W. Kern, and G. Trimmel, “UV induced modulation of the refractive index and the surface properties of photoreactive polymers bearing N-phenylamide groups,” Macromolecules 42, 725–731 (2009).
[CrossRef]

T. Hofler, T. Grieber, X. Gstrein, G. Trimmel, G. Jakopic, and W. Kern, “UV reactive polymers for refractive index modulation based on the photo-Fries rearrangement,” Polymer 48, 1930–1939 (2007).
[CrossRef]

Kim, J. Y.

V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).

Kim, S. H.

V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).

Kim, T. M.

V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).

Klemberg-Sapieha, J. E.

S. Vallon, B. Drevillon, F. Poncin-Epaillard, J. E. Klemberg-Sapieha, and L. Martinu, “Argon plasma treatment of polycarbonate: in situ spectroellipsometry study and polymer characterizations,” J. Vac. Sci. Technol. A 14, 3194–3201 (1996).
[CrossRef]

Klepp, J.

J. Klepp, C. Pruner, Y. Tomita, K. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100, 214104 (2012).
[CrossRef]

Kliger, D.

A. Gupta, R. Liang, J. Moacanin, R. Goldbeck, and D. Kliger, “Photochemical processes in polymeric systems” 2. “Photochemistry of a polycarbonate of bisphenol A in solution and in the solid phase,” Macromolecules 13, 262–267 (1980).
[CrossRef]

Kobsa, H.

H. Kobsa, “Rearrangement of aromatic esters by ultraviolet radiation,” J. Org. Chem. 27, 2293–2298 (1962).

Kuhlmann, J.-C.

T. Griesser, J.-C. Kuhlmann, M. Wieser, W. Kern, and G. Trimmel, “UV induced modulation of the refractive index and the surface properties of photoreactive polymers bearing N-phenylamide groups,” Macromolecules 42, 725–731 (2009).
[CrossRef]

Kyrychenko, V.

L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).

V. Kyrychenko, G. Smolyakov, V. Zagniy, L. Vretik, L. Paskal, V. Syromyatnikov, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 496, 278–292 (2008).

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

L. Vretik, O. Yaroshchuk, V. Zagniy, V. Kyrychenko, and V. Syromyatnikov, Liquid Crystalline Organic Compounds and Polymers as Materials of the XXI Century: From Synthesis To Applications, A. Iwan, ed. (Transworld Research Network, 2011), pp. 153–190.

Lee, C.-D.

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

Li, S.

S. Li and J. Guillet, “Studies of the photo-Fries reaction in solid poly(phenyl acrylate),” Macromolecules 10, 840–844 (1977).
[CrossRef]

Liang, R.

A. Gupta, R. Liang, J. Moacanin, R. Goldbeck, and D. Kliger, “Photochemical processes in polymeric systems” 2. “Photochemistry of a polycarbonate of bisphenol A in solution and in the solid phase,” Macromolecules 13, 262–267 (1980).
[CrossRef]

Martinu, L.

S. Vallon, B. Drevillon, F. Poncin-Epaillard, J. E. Klemberg-Sapieha, and L. Martinu, “Argon plasma treatment of polycarbonate: in situ spectroellipsometry study and polymer characterizations,” J. Vac. Sci. Technol. A 14, 3194–3201 (1996).
[CrossRef]

Merle, Y.

L. Merle-Aubry, D. Holden, Y. Merle, and J. Guillet, “Photophysics and photochemistry of naphthly ester polymers in solution,” Macromolecules 13, 1138–1143 (1980).
[CrossRef]

Merle-Aubry, L.

L. Merle-Aubry, D. Holden, Y. Merle, and J. Guillet, “Photophysics and photochemistry of naphthly ester polymers in solution,” Macromolecules 13, 1138–1143 (1980).
[CrossRef]

Moacanin, J.

A. Gupta, R. Liang, J. Moacanin, R. Goldbeck, and D. Kliger, “Photochemical processes in polymeric systems” 2. “Photochemistry of a polycarbonate of bisphenol A in solution and in the solid phase,” Macromolecules 13, 262–267 (1980).
[CrossRef]

Paskal, L.

L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).

V. Kyrychenko, G. Smolyakov, V. Zagniy, L. Vretik, L. Paskal, V. Syromyatnikov, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 496, 278–292 (2008).

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, and O. Yaroshchuk, “New photoalignment materials in LCDs development: liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst. 468, 173–179 (2007).

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

Poncin-Epaillard, F.

S. Vallon, B. Drevillon, F. Poncin-Epaillard, J. E. Klemberg-Sapieha, and L. Martinu, “Argon plasma treatment of polycarbonate: in situ spectroellipsometry study and polymer characterizations,” J. Vac. Sci. Technol. A 14, 3194–3201 (1996).
[CrossRef]

Pruner, C.

J. Klepp, C. Pruner, Y. Tomita, K. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100, 214104 (2012).
[CrossRef]

Reese, C. B.

J. C. Anderson and C. B. Reese, “Photo-induced Fries rearrangements,” Proc. Anal. Div. Chem. Soc. 217, 213 (1960).

Savchuk, E.

L. Vretik, V. Syromyatnikov, V. Zagniy, E. Savchuk, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 237, 57–65 (2008).

Savchuk, O.

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, and O. Yaroshchuk, “New photoalignment materials in LCDs development: liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst. 468, 173–179 (2007).

Smolyakov, G.

L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).

V. Kyrychenko, G. Smolyakov, V. Zagniy, L. Vretik, L. Paskal, V. Syromyatnikov, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 496, 278–292 (2008).

Syromyatnikov, V.

L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).

V. Kyrychenko, G. Smolyakov, V. Zagniy, L. Vretik, L. Paskal, V. Syromyatnikov, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 496, 278–292 (2008).

L. Vretik, V. Syromyatnikov, V. Zagniy, E. Savchuk, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 237, 57–65 (2008).

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, and O. Yaroshchuk, “New photoalignment materials in LCDs development: liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst. 468, 173–179 (2007).

V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).

L. Vretik, O. Yaroshchuk, V. Zagniy, V. Kyrychenko, and V. Syromyatnikov, Liquid Crystalline Organic Compounds and Polymers as Materials of the XXI Century: From Synthesis To Applications, A. Iwan, ed. (Transworld Research Network, 2011), pp. 153–190.

Tessier, T.

J. Frechet and T. Tessier, “Poly[p-(formyloxy)styrene]: synthesis and radiation-induced decarbonylation,” Macromolecules 18, 317–321 (1985).
[CrossRef]

Tomita, Y.

J. Klepp, C. Pruner, Y. Tomita, K. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100, 214104 (2012).
[CrossRef]

Trimmel, G.

T. Griesser, J.-C. Kuhlmann, M. Wieser, W. Kern, and G. Trimmel, “UV induced modulation of the refractive index and the surface properties of photoreactive polymers bearing N-phenylamide groups,” Macromolecules 42, 725–731 (2009).
[CrossRef]

T. Griesser, T. Höfler, G. Jakopiec, M. Belzik, W. Kern, and G. Trimmel, “Refractive index modulation in polymers bearing photoreactive phenyl and naphthyl ester units using different UV wavelengths,” J. Mater. Chem. 19, 4557–4565 (2009).
[CrossRef]

T. Hofler, T. Grieber, X. Gstrein, G. Trimmel, G. Jakopic, and W. Kern, “UV reactive polymers for refractive index modulation based on the photo-Fries rearrangement,” Polymer 48, 1930–1939 (2007).
[CrossRef]

Vallon, S.

S. Vallon, B. Drevillon, F. Poncin-Epaillard, J. E. Klemberg-Sapieha, and L. Martinu, “Argon plasma treatment of polycarbonate: in situ spectroellipsometry study and polymer characterizations,” J. Vac. Sci. Technol. A 14, 3194–3201 (1996).
[CrossRef]

Vretik, L.

L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).

L. Vretik, V. Syromyatnikov, V. Zagniy, E. Savchuk, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 237, 57–65 (2008).

V. Kyrychenko, G. Smolyakov, V. Zagniy, L. Vretik, L. Paskal, V. Syromyatnikov, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 496, 278–292 (2008).

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, and O. Yaroshchuk, “New photoalignment materials in LCDs development: liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst. 468, 173–179 (2007).

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).

L. Vretik, O. Yaroshchuk, V. Zagniy, V. Kyrychenko, and V. Syromyatnikov, Liquid Crystalline Organic Compounds and Polymers as Materials of the XXI Century: From Synthesis To Applications, A. Iwan, ed. (Transworld Research Network, 2011), pp. 153–190.

Wieser, M.

T. Griesser, J.-C. Kuhlmann, M. Wieser, W. Kern, and G. Trimmel, “UV induced modulation of the refractive index and the surface properties of photoreactive polymers bearing N-phenylamide groups,” Macromolecules 42, 725–731 (2009).
[CrossRef]

Yaroshchuk, O.

L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).

V. Kyrychenko, G. Smolyakov, V. Zagniy, L. Vretik, L. Paskal, V. Syromyatnikov, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 496, 278–292 (2008).

L. Vretik, V. Syromyatnikov, V. Zagniy, E. Savchuk, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 237, 57–65 (2008).

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, and O. Yaroshchuk, “New photoalignment materials in LCDs development: liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst. 468, 173–179 (2007).

V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).

L. Vretik, O. Yaroshchuk, V. Zagniy, V. Kyrychenko, and V. Syromyatnikov, Liquid Crystalline Organic Compounds and Polymers as Materials of the XXI Century: From Synthesis To Applications, A. Iwan, ed. (Transworld Research Network, 2011), pp. 153–190.

Zagniy, V.

L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).

V. Kyrychenko, G. Smolyakov, V. Zagniy, L. Vretik, L. Paskal, V. Syromyatnikov, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 496, 278–292 (2008).

L. Vretik, V. Syromyatnikov, V. Zagniy, E. Savchuk, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 237, 57–65 (2008).

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, and O. Yaroshchuk, “New photoalignment materials in LCDs development: liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst. 468, 173–179 (2007).

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

L. Vretik, O. Yaroshchuk, V. Zagniy, V. Kyrychenko, and V. Syromyatnikov, Liquid Crystalline Organic Compounds and Polymers as Materials of the XXI Century: From Synthesis To Applications, A. Iwan, ed. (Transworld Research Network, 2011), pp. 153–190.

Zakrevskyy, Y.

V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).

Appl. Phys. Lett. (1)

J. Klepp, C. Pruner, Y. Tomita, K. Geltenbort, and M. Fally, “Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings,” Appl. Phys. Lett. 100, 214104 (2012).
[CrossRef]

J. Mater. Chem. (1)

T. Griesser, T. Höfler, G. Jakopiec, M. Belzik, W. Kern, and G. Trimmel, “Refractive index modulation in polymers bearing photoreactive phenyl and naphthyl ester units using different UV wavelengths,” J. Mater. Chem. 19, 4557–4565 (2009).
[CrossRef]

J. Org. Chem. (1)

H. Kobsa, “Rearrangement of aromatic esters by ultraviolet radiation,” J. Org. Chem. 27, 2293–2298 (1962).

J. Vac. Sci. Technol. A (1)

S. Vallon, B. Drevillon, F. Poncin-Epaillard, J. E. Klemberg-Sapieha, and L. Martinu, “Argon plasma treatment of polycarbonate: in situ spectroellipsometry study and polymer characterizations,” J. Vac. Sci. Technol. A 14, 3194–3201 (1996).
[CrossRef]

Macromolecules (5)

J. Frechet and T. Tessier, “Poly[p-(formyloxy)styrene]: synthesis and radiation-induced decarbonylation,” Macromolecules 18, 317–321 (1985).
[CrossRef]

S. Li and J. Guillet, “Studies of the photo-Fries reaction in solid poly(phenyl acrylate),” Macromolecules 10, 840–844 (1977).
[CrossRef]

L. Merle-Aubry, D. Holden, Y. Merle, and J. Guillet, “Photophysics and photochemistry of naphthly ester polymers in solution,” Macromolecules 13, 1138–1143 (1980).
[CrossRef]

T. Griesser, J.-C. Kuhlmann, M. Wieser, W. Kern, and G. Trimmel, “UV induced modulation of the refractive index and the surface properties of photoreactive polymers bearing N-phenylamide groups,” Macromolecules 42, 725–731 (2009).
[CrossRef]

A. Gupta, R. Liang, J. Moacanin, R. Goldbeck, and D. Kliger, “Photochemical processes in polymeric systems” 2. “Photochemistry of a polycarbonate of bisphenol A in solution and in the solid phase,” Macromolecules 13, 262–267 (1980).
[CrossRef]

Mol. Cryst. Liq. Cryst. (6)

V. Syromyatnikov, L. Vretik, O. Yaroshchuk, Y. Zakrevskyy, T. M. Kim, J. H. Jo, J. Y. Kim, and S. H. Kim, “Naphthalene containing polymers as new photoaligning materials for LCs,” Mol. Cryst. Liq. Cryst. 368, 543–549 (2001).

L. Vretik, V. Syromyatnikov, V. Zagniy, E. Savchuk, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 237, 57–65 (2008).

L. Vretik, V. Syromyatnikov, V. Zagniy, L. Paskal, O. Savchuk, O. Yaroshchuk, L. Dolgov, V. Kyrychenko, and C.-D. Lee, “Polymethacryloylaminoarylmethacrylates: new concept of photoalignment materials for liquid crystals,” Mol. Cryst. Liq. Cryst. 479, 121–134 (2007).

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, and O. Yaroshchuk, “New photoalignment materials in LCDs development: liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst. 468, 173–179 (2007).

V. Kyrychenko, G. Smolyakov, V. Zagniy, L. Vretik, L. Paskal, V. Syromyatnikov, and O. Yaroshchuk, “Photochemistry of bis-methacrylic polymers and alignment of liquid crystals,” Mol. Cryst. Liq. Cryst. 496, 278–292 (2008).

L. Vretik, V. Kyrychenko, G. Smolyakov, O. Yaroshchuk, V. Zagniy, T. Gavrilko, L. Paskal, and V. Syromyatnikov, “Photochemical transformations in bis-methacrylic polymers for liquid crystal photoalignment: IR spectroscopy studies,” Mol. Cryst. Liq. Cryst. 536, 224–228 (2011).

Polymer (1)

T. Hofler, T. Grieber, X. Gstrein, G. Trimmel, G. Jakopic, and W. Kern, “UV reactive polymers for refractive index modulation based on the photo-Fries rearrangement,” Polymer 48, 1930–1939 (2007).
[CrossRef]

Proc. Anal. Div. Chem. Soc. (1)

J. C. Anderson and C. B. Reese, “Photo-induced Fries rearrangements,” Proc. Anal. Div. Chem. Soc. 217, 213 (1960).

Other (1)

L. Vretik, O. Yaroshchuk, V. Zagniy, V. Kyrychenko, and V. Syromyatnikov, Liquid Crystalline Organic Compounds and Polymers as Materials of the XXI Century: From Synthesis To Applications, A. Iwan, ed. (Transworld Research Network, 2011), pp. 153–190.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sketch of the setup for DGs (a) recording and (b) reconstruction, where 1 is the mercury lamp (power is 400 W), 2 is the polarizer, 3 is the homogeneous lattice prepared from thin metallic wires (wire diameter is 50 μm, distance between neighbor wires is 250 μm), 4 is the P1 or P2 polymer film, 5 is the quarts substrate, 6 is the He–Ne laser (power is 17 mW) with phase rotating plate, 7 is the flat white screen, 8 is the CCD camera, 9 is the computer, 10 is the photoreceiver, and 11 is the oscilloscope Tektronix TDS1001B.

Fig. 2.
Fig. 2.

Spectra of optical density of the samples with P1 polymer films before illumination (1) with UV light and after illumination with UV light with light wavelength 254 nm (close to P1 absorption maximum); (2) during 5 min; (3) 15 min; (4) 30 min.

Fig. 3.
Fig. 3.

Pictures of the screen with projected reconstructed DG images recorded in the samples with P1 (left) and P2 (right) polymer films. He–Ne laser (maximal irradiation power at the light wavelength 633 nm) was used for the reconstruction.

Metrics