Abstract

This research presents the results of investigation of laser polarization fluorescence of biological layers (histological sections, cytological smears). The polarization structural properties of autofluorescent images of human biological tissues layers and fluids were found and investigated. A model describing the formation of polarizationally heterogeneous images of optically anisotropic biological layers is suggested. On this basis, the practical method of polarization-variable autofluorescence is analytically substantiated and experimentally tested. The efficiency of applying this method to various tasks of medical diagnostics is analyzed: objectification of histological conclusions, defining and differentiating of various forms of cancer (dysplasia—microinvasive cancer) of the cervix uteri, and forensic medical express-differentiation of cause of death. The objective criteria (statistical moments) of differentiation of autofluorescent images of histological sections of myocardium biopsy and endometrium and cytological smears of its mucous tunic are defined. The operational characteristics (sensitivity, specificity, accuracy) of this method are determined concerning the positions of probative medicine, and the clinical efficiency of the technique is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Huard, Polarization of Light (Wiley, 1997).
  2. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003).
  3. M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3991, 210–216 (2000).
    [Crossref]
  4. A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
    [Crossref]
  5. O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
    [Crossref]
  6. S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
    [Crossref]
  7. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Yu. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
    [Crossref]
  8. J. Qi, M. Ye, M. Singh, N. T. Clancy, and D. S. Elson, “Narrow band 3×3 Mueller polarimetric endoscopy,” Biomed. Opt. Express 4, 2433–2449 (2013).
    [Crossref]
  9. A. G. Ushenko and V. P. Pishak, “Laser polarimetry of biological tissue: principles and applications,” in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, V. V. Tuchin, ed. (Kluwer Academic, 2004), Vol. 1, pp. 93–138.
  10. O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, V. P. Pishak, and A. P. Peresunko, “Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), pp. 283–322.
  11. Y. A. Ushenko, T. M. Boychuk, V. T. Bachynsky, and O. P. Mincer, “Diagnostics of structure and physiological state of birefringent biological tissues: statistical, correlation and topological approaches,” in Handbook of Coherent-Domain Optical Methods (Springer, 2013), pp. 107–148.
  12. Yu. A. Ushenko, G. B. Bodnar, and G. D. Koval, “Classifying optical properties of surface-and bulk-scattering biological layers with polarization singular states,” J. Innov. Opt. Health Sci. 6, 1350018 (2013).
    [Crossref]
  13. Yu. A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16, 066006 (2011).
    [Crossref]
  14. Yu. A. Ushenko, “Statistical structure of polarization-inhomogeneous images of biotissues with different morphological structures,” Ukr. J. Phys. Opt. 6, 63–70 (2005).
    [Crossref]
  15. Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of Mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 952423 (2010).
  16. Yu. A. Ushenko, O. I. Telenga, A. P. Peresunko, and O. K. Numan, “New parameter for describing and analyzing the optical-anisotropic properties of biological tissues,” J. Innov. Opt. Health Sci. 4, 463–475 (2011).
    [Crossref]
  17. Yu. A. Ushenko, “The feasibilities of using the statistical, fractal and singular processing of hominal blood plasma phase images during the diagnostics and differentiation of mammary gland pathological states,” J. Innov. Opt. Health Sci. 5, 1150001 (2012).
    [Crossref]
  18. S. Andersson-Engels, C. Klinteberg, K. Svanberg, and S. Svanberg, “In vivo fluorescence imaging for tissue diagnostics,” Phys. Med. Biol. 42, 815–824 (1997).
    [Crossref]
  19. R. R. Alfano, B. B. Das, J. Cleary, R. Prudente, and E. J. Celmer, “Light sheds light on cancer—distinguishing malignant tumors from benign tissues and tumors,” Bull. NY Acad. Med. 67, 143–150 (1991).
  20. M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
    [Crossref]
  21. A. G. Bohorfoush, “Tissue spectroscopy for gastrointestinal diseases,” Endoscopy 28, 372–380 (1996).
  22. B. Chwirot, W. Jedrzejczyk, S. Chwirot, Z. Michniewicz, and J. Redzinski, “Tissue spectroscopy. New generation of optical methods for cancer detection,” Pol. Merkuriusz. Lek. 5, 355–358 (1996).
  23. M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
    [Crossref]
  24. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
    [Crossref]
  25. J. Y. Qu, “Real time calibrated fluorescence imaging of tissue in vivo by using the combination of fluorescence and cross-polarized reflection” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. 485–487.
  26. N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid medium by polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
    [Crossref]
  27. L. V. Kakturskiĭ, “Clinical morphology of acute coronary syndrome,” Arkh Patol. 69, 16–19 (2007).
  28. C. Basso, F. Calabrese, D. Corrado, and G. Thiene, “Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings,” Cardiovasc. Res. 50, 290–300 (2001).
    [Crossref]
  29. M. D. Pérez-Cárceles, J. Noguera, J. L. Jiménez, P. Martínez, A. Luna, and E. Osuna, “Diagnostic efficacy of biochemical markers in diagnosis postmortem of ischaemic heart disease,” Forensic Sci. Int. 142, 1–7 (2004).
    [Crossref]
  30. F. Martínez Díaz, M. Rodríguez-Morlensín, M. D. Pérez-Cárceles, J. Noguera, A. Luna, and E. Osuna, “Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage,” Histol. Histopathol. 20, 475–481 (2005).
  31. S. N. Savenkov, V. V. Marienko, E. A. Oberemok, and O. I. Sydoruk, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 605–607 (2006).
    [Crossref]
  32. R. Stroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, and E. Unsold, “Laser assisted detection of endogenous porphyrin in malignant diseases,” Proc. SPIE 1641, 99–106 (1991).
    [Crossref]
  33. M.-A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. M. De Witte, and L. Baert, “Hypericin-based fluorescence diagnosis of bladder carcinoma,” BJU Int. 89, 760–763 (2002).
    [Crossref]
  34. M. A. D’Hallewin, L. Bezdetnaya, and F. Guillemin, “Fluorescence detection of bladder cancer: a review,” Eur. Urol. 42, 417–425 (2002).
    [Crossref]
  35. L. D. Cassidy, “Basic concepts of statistical analysis for surgical research,” J. Surg. Res. 128, 199–206 (2005).
    [Crossref]
  36. C. S. Davis, Statistical Methods of the Analysis of Repeated Measurements (Springer-Verlag, 2002).
  37. A. Petrie and C. Sabin, Medical Statistics at a Glance (Blackwell, 2005).

2013 (2)

J. Qi, M. Ye, M. Singh, N. T. Clancy, and D. S. Elson, “Narrow band 3×3 Mueller polarimetric endoscopy,” Biomed. Opt. Express 4, 2433–2449 (2013).
[Crossref]

Yu. A. Ushenko, G. B. Bodnar, and G. D. Koval, “Classifying optical properties of surface-and bulk-scattering biological layers with polarization singular states,” J. Innov. Opt. Health Sci. 6, 1350018 (2013).
[Crossref]

2012 (3)

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[Crossref]

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Yu. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[Crossref]

Yu. A. Ushenko, “The feasibilities of using the statistical, fractal and singular processing of hominal blood plasma phase images during the diagnostics and differentiation of mammary gland pathological states,” J. Innov. Opt. Health Sci. 5, 1150001 (2012).
[Crossref]

2011 (2)

Yu. A. Ushenko, O. I. Telenga, A. P. Peresunko, and O. K. Numan, “New parameter for describing and analyzing the optical-anisotropic properties of biological tissues,” J. Innov. Opt. Health Sci. 4, 463–475 (2011).
[Crossref]

Yu. A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16, 066006 (2011).
[Crossref]

2010 (1)

Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of Mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 952423 (2010).

2007 (1)

L. V. Kakturskiĭ, “Clinical morphology of acute coronary syndrome,” Arkh Patol. 69, 16–19 (2007).

2006 (2)

S. N. Savenkov, V. V. Marienko, E. A. Oberemok, and O. I. Sydoruk, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 605–607 (2006).
[Crossref]

M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
[Crossref]

2005 (4)

Yu. A. Ushenko, “Statistical structure of polarization-inhomogeneous images of biotissues with different morphological structures,” Ukr. J. Phys. Opt. 6, 63–70 (2005).
[Crossref]

N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid medium by polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
[Crossref]

F. Martínez Díaz, M. Rodríguez-Morlensín, M. D. Pérez-Cárceles, J. Noguera, A. Luna, and E. Osuna, “Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage,” Histol. Histopathol. 20, 475–481 (2005).

L. D. Cassidy, “Basic concepts of statistical analysis for surgical research,” J. Surg. Res. 128, 199–206 (2005).
[Crossref]

2004 (1)

M. D. Pérez-Cárceles, J. Noguera, J. L. Jiménez, P. Martínez, A. Luna, and E. Osuna, “Diagnostic efficacy of biochemical markers in diagnosis postmortem of ischaemic heart disease,” Forensic Sci. Int. 142, 1–7 (2004).
[Crossref]

2002 (2)

M.-A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. M. De Witte, and L. Baert, “Hypericin-based fluorescence diagnosis of bladder carcinoma,” BJU Int. 89, 760–763 (2002).
[Crossref]

M. A. D’Hallewin, L. Bezdetnaya, and F. Guillemin, “Fluorescence detection of bladder cancer: a review,” Eur. Urol. 42, 417–425 (2002).
[Crossref]

2001 (1)

C. Basso, F. Calabrese, D. Corrado, and G. Thiene, “Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings,” Cardiovasc. Res. 50, 290–300 (2001).
[Crossref]

2000 (1)

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3991, 210–216 (2000).
[Crossref]

1999 (1)

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[Crossref]

1997 (1)

S. Andersson-Engels, C. Klinteberg, K. Svanberg, and S. Svanberg, “In vivo fluorescence imaging for tissue diagnostics,” Phys. Med. Biol. 42, 815–824 (1997).
[Crossref]

1996 (4)

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

A. G. Bohorfoush, “Tissue spectroscopy for gastrointestinal diseases,” Endoscopy 28, 372–380 (1996).

B. Chwirot, W. Jedrzejczyk, S. Chwirot, Z. Michniewicz, and J. Redzinski, “Tissue spectroscopy. New generation of optical methods for cancer detection,” Pol. Merkuriusz. Lek. 5, 355–358 (1996).

S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
[Crossref]

1991 (2)

R. R. Alfano, B. B. Das, J. Cleary, R. Prudente, and E. J. Celmer, “Light sheds light on cancer—distinguishing malignant tumors from benign tissues and tumors,” Bull. NY Acad. Med. 67, 143–150 (1991).

R. Stroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, and E. Unsold, “Laser assisted detection of endogenous porphyrin in malignant diseases,” Proc. SPIE 1641, 99–106 (1991).
[Crossref]

1984 (1)

R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[Crossref]

Aerts, J. G. J. V.

M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
[Crossref]

Alfano, M.

R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[Crossref]

Alfano, R.

R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[Crossref]

Alfano, R. R.

R. R. Alfano, B. B. Das, J. Cleary, R. Prudente, and E. J. Celmer, “Light sheds light on cancer—distinguishing malignant tumors from benign tissues and tumors,” Bull. NY Acad. Med. 67, 143–150 (1991).

Amelink, A.

M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
[Crossref]

Andersson-Engels, S.

S. Andersson-Engels, C. Klinteberg, K. Svanberg, and S. Svanberg, “In vivo fluorescence imaging for tissue diagnostics,” Phys. Med. Biol. 42, 815–824 (1997).
[Crossref]

Angel’skii, O. V.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[Crossref]

Angelsky, O. V.

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[Crossref]

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Yu. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[Crossref]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, V. P. Pishak, and A. P. Peresunko, “Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), pp. 283–322.

Anidjar, M.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

Archelyuk, A. D.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[Crossref]

Avrillier, S.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

Bachynsky, V. T.

Y. A. Ushenko, T. M. Boychuk, V. T. Bachynsky, and O. P. Mincer, “Diagnostics of structure and physiological state of birefringent biological tissues: statistical, correlation and topological approaches,” in Handbook of Coherent-Domain Optical Methods (Springer, 2013), pp. 107–148.

Baert, L.

M.-A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. M. De Witte, and L. Baert, “Hypericin-based fluorescence diagnosis of bladder carcinoma,” BJU Int. 89, 760–763 (2002).
[Crossref]

Baku, B. A.

Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of Mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 952423 (2010).

Bard, M. P. L.

M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
[Crossref]

Basso, C.

C. Basso, F. Calabrese, D. Corrado, and G. Thiene, “Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings,” Cardiovasc. Res. 50, 290–300 (2001).
[Crossref]

Baumgartner, R.

R. Stroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, and E. Unsold, “Laser assisted detection of endogenous porphyrin in malignant diseases,” Proc. SPIE 1641, 99–106 (1991).
[Crossref]

Bekshaev, A. Y.

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[Crossref]

Bekshaev, A. Ya.

Bezdetnaya, L.

M. A. D’Hallewin, L. Bezdetnaya, and F. Guillemin, “Fluorescence detection of bladder cancer: a review,” Eur. Urol. 42, 417–425 (2002).
[Crossref]

Bodnar, G. B.

Yu. A. Ushenko, G. B. Bodnar, and G. D. Koval, “Classifying optical properties of surface-and bulk-scattering biological layers with polarization singular states,” J. Innov. Opt. Health Sci. 6, 1350018 (2013).
[Crossref]

Bohorfoush, A. G.

A. G. Bohorfoush, “Tissue spectroscopy for gastrointestinal diseases,” Endoscopy 28, 372–380 (1996).

Boychuk, T. M.

Y. A. Ushenko, T. M. Boychuk, V. T. Bachynsky, and O. P. Mincer, “Diagnostics of structure and physiological state of birefringent biological tissues: statistical, correlation and topological approaches,” in Handbook of Coherent-Domain Optical Methods (Springer, 2013), pp. 107–148.

Burke, P.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3991, 210–216 (2000).
[Crossref]

Burkovets, D. N.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[Crossref]

Buser, A.

R. Stroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, and E. Unsold, “Laser assisted detection of endogenous porphyrin in malignant diseases,” Proc. SPIE 1641, 99–106 (1991).
[Crossref]

Calabrese, F.

C. Basso, F. Calabrese, D. Corrado, and G. Thiene, “Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings,” Cardiovasc. Res. 50, 290–300 (2001).
[Crossref]

Cassidy, L. D.

L. D. Cassidy, “Basic concepts of statistical analysis for surgical research,” J. Surg. Res. 128, 199–206 (2005).
[Crossref]

Celmer, E. J.

R. R. Alfano, B. B. Das, J. Cleary, R. Prudente, and E. J. Celmer, “Light sheds light on cancer—distinguishing malignant tumors from benign tissues and tumors,” Bull. NY Acad. Med. 67, 143–150 (1991).

Chipman, R. A.

Chwirot, B.

B. Chwirot, W. Jedrzejczyk, S. Chwirot, Z. Michniewicz, and J. Redzinski, “Tissue spectroscopy. New generation of optical methods for cancer detection,” Pol. Merkuriusz. Lek. 5, 355–358 (1996).

Chwirot, S.

B. Chwirot, W. Jedrzejczyk, S. Chwirot, Z. Michniewicz, and J. Redzinski, “Tissue spectroscopy. New generation of optical methods for cancer detection,” Pol. Merkuriusz. Lek. 5, 355–358 (1996).

Clancy, N. T.

Cleary, J.

R. R. Alfano, B. B. Das, J. Cleary, R. Prudente, and E. J. Celmer, “Light sheds light on cancer—distinguishing malignant tumors from benign tissues and tumors,” Bull. NY Acad. Med. 67, 143–150 (1991).

Cordero, J.

R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[Crossref]

Corrado, D.

C. Basso, F. Calabrese, D. Corrado, and G. Thiene, “Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings,” Cardiovasc. Res. 50, 290–300 (2001).
[Crossref]

Cortesse, A.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

Cussenot, O.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

D’Hallewin, M. A.

M. A. D’Hallewin, L. Bezdetnaya, and F. Guillemin, “Fluorescence detection of bladder cancer: a review,” Eur. Urol. 42, 417–425 (2002).
[Crossref]

D’Hallewin, M.-A.

M.-A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. M. De Witte, and L. Baert, “Hypericin-based fluorescence diagnosis of bladder carcinoma,” BJU Int. 89, 760–763 (2002).
[Crossref]

Das, B. B.

R. R. Alfano, B. B. Das, J. Cleary, R. Prudente, and E. J. Celmer, “Light sheds light on cancer—distinguishing malignant tumors from benign tissues and tumors,” Bull. NY Acad. Med. 67, 143–150 (1991).

Davis, C. S.

C. S. Davis, Statistical Methods of the Analysis of Repeated Measurements (Springer-Verlag, 2002).

De Witte, P. A. M.

M.-A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. M. De Witte, and L. Baert, “Hypericin-based fluorescence diagnosis of bladder carcinoma,” BJU Int. 89, 760–763 (2002).
[Crossref]

Desgrandchamps, F.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

Duin, R. P. W.

M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
[Crossref]

Ell, C.

R. Stroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, and E. Unsold, “Laser assisted detection of endogenous porphyrin in malignant diseases,” Proc. SPIE 1641, 99–106 (1991).
[Crossref]

Elson, D. S.

Ermolenko, S. B.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[Crossref]

Ettori, D.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

Ghosh, N.

Goldstein, D.

D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003).

Guillemin, F.

M. A. D’Hallewin, L. Bezdetnaya, and F. Guillemin, “Fluorescence detection of bladder cancer: a review,” Eur. Urol. 42, 417–425 (2002).
[Crossref]

Gupta, P. K.

Hanson, S. G.

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[Crossref]

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Yu. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[Crossref]

Hillman, L. W.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3991, 210–216 (2000).
[Crossref]

Hoogsteden, H. C.

M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
[Crossref]

Huard, S.

S. Huard, Polarization of Light (Wiley, 1997).

Jedrzejczyk, W.

B. Chwirot, W. Jedrzejczyk, S. Chwirot, Z. Michniewicz, and J. Redzinski, “Tissue spectroscopy. New generation of optical methods for cancer detection,” Pol. Merkuriusz. Lek. 5, 355–358 (1996).

Jiménez, J. L.

M. D. Pérez-Cárceles, J. Noguera, J. L. Jiménez, P. Martínez, A. Luna, and E. Osuna, “Diagnostic efficacy of biochemical markers in diagnosis postmortem of ischaemic heart disease,” Forensic Sci. Int. 142, 1–7 (2004).
[Crossref]

Jocham, D.

R. Stroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, and E. Unsold, “Laser assisted detection of endogenous porphyrin in malignant diseases,” Proc. SPIE 1641, 99–106 (1991).
[Crossref]

Kakturskii, L. V.

L. V. Kakturskiĭ, “Clinical morphology of acute coronary syndrome,” Arkh Patol. 69, 16–19 (2007).

Kamuhabwa, A. R.

M.-A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. M. De Witte, and L. Baert, “Hypericin-based fluorescence diagnosis of bladder carcinoma,” BJU Int. 89, 760–763 (2002).
[Crossref]

Klinteberg, C.

S. Andersson-Engels, C. Klinteberg, K. Svanberg, and S. Svanberg, “In vivo fluorescence imaging for tissue diagnostics,” Phys. Med. Biol. 42, 815–824 (1997).
[Crossref]

Koval, G. D.

Yu. A. Ushenko, G. B. Bodnar, and G. D. Koval, “Classifying optical properties of surface-and bulk-scattering biological layers with polarization singular states,” J. Innov. Opt. Health Sci. 6, 1350018 (2013).
[Crossref]

Le Duc, A.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

Lompado, A.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3991, 210–216 (2000).
[Crossref]

Longo, F.

R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[Crossref]

Lu, S.

Luna, A.

F. Martínez Díaz, M. Rodríguez-Morlensín, M. D. Pérez-Cárceles, J. Noguera, A. Luna, and E. Osuna, “Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage,” Histol. Histopathol. 20, 475–481 (2005).

M. D. Pérez-Cárceles, J. Noguera, J. L. Jiménez, P. Martínez, A. Luna, and E. Osuna, “Diagnostic efficacy of biochemical markers in diagnosis postmortem of ischaemic heart disease,” Forensic Sci. Int. 142, 1–7 (2004).
[Crossref]

Majumder, S. K.

Maksimyak, A. P.

Maksimyak, P. P.

Marienko, V. V.

S. N. Savenkov, V. V. Marienko, E. A. Oberemok, and O. I. Sydoruk, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 605–607 (2006).
[Crossref]

Martínez, P.

M. D. Pérez-Cárceles, J. Noguera, J. L. Jiménez, P. Martínez, A. Luna, and E. Osuna, “Diagnostic efficacy of biochemical markers in diagnosis postmortem of ischaemic heart disease,” Forensic Sci. Int. 142, 1–7 (2004).
[Crossref]

Martínez Díaz, F.

F. Martínez Díaz, M. Rodríguez-Morlensín, M. D. Pérez-Cárceles, J. Noguera, A. Luna, and E. Osuna, “Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage,” Histol. Histopathol. 20, 475–481 (2005).

Meria, P.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

Michniewicz, Z.

B. Chwirot, W. Jedrzejczyk, S. Chwirot, Z. Michniewicz, and J. Redzinski, “Tissue spectroscopy. New generation of optical methods for cancer detection,” Pol. Merkuriusz. Lek. 5, 355–358 (1996).

Mincer, O. P.

Y. A. Ushenko, T. M. Boychuk, V. T. Bachynsky, and O. P. Mincer, “Diagnostics of structure and physiological state of birefringent biological tissues: statistical, correlation and topological approaches,” in Handbook of Coherent-Domain Optical Methods (Springer, 2013), pp. 107–148.

Mokhun, I. I.

Noguera, J.

F. Martínez Díaz, M. Rodríguez-Morlensín, M. D. Pérez-Cárceles, J. Noguera, A. Luna, and E. Osuna, “Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage,” Histol. Histopathol. 20, 475–481 (2005).

M. D. Pérez-Cárceles, J. Noguera, J. L. Jiménez, P. Martínez, A. Luna, and E. Osuna, “Diagnostic efficacy of biochemical markers in diagnosis postmortem of ischaemic heart disease,” Forensic Sci. Int. 142, 1–7 (2004).
[Crossref]

Noordhoek, H. V.

M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
[Crossref]

Numan, O. K.

Yu. A. Ushenko, O. I. Telenga, A. P. Peresunko, and O. K. Numan, “New parameter for describing and analyzing the optical-anisotropic properties of biological tissues,” J. Innov. Opt. Health Sci. 4, 463–475 (2011).
[Crossref]

Oberemok, E. A.

S. N. Savenkov, V. V. Marienko, E. A. Oberemok, and O. I. Sydoruk, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 605–607 (2006).
[Crossref]

Osuna, E.

F. Martínez Díaz, M. Rodríguez-Morlensín, M. D. Pérez-Cárceles, J. Noguera, A. Luna, and E. Osuna, “Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage,” Histol. Histopathol. 20, 475–481 (2005).

M. D. Pérez-Cárceles, J. Noguera, J. L. Jiménez, P. Martínez, A. Luna, and E. Osuna, “Diagnostic efficacy of biochemical markers in diagnosis postmortem of ischaemic heart disease,” Forensic Sci. Int. 142, 1–7 (2004).
[Crossref]

Patel, H. S.

Peresunko, A. P.

Yu. A. Ushenko, O. I. Telenga, A. P. Peresunko, and O. K. Numan, “New parameter for describing and analyzing the optical-anisotropic properties of biological tissues,” J. Innov. Opt. Health Sci. 4, 463–475 (2011).
[Crossref]

Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of Mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 952423 (2010).

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, V. P. Pishak, and A. P. Peresunko, “Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), pp. 283–322.

Pérez-Cárceles, M. D.

F. Martínez Díaz, M. Rodríguez-Morlensín, M. D. Pérez-Cárceles, J. Noguera, A. Luna, and E. Osuna, “Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage,” Histol. Histopathol. 20, 475–481 (2005).

M. D. Pérez-Cárceles, J. Noguera, J. L. Jiménez, P. Martínez, A. Luna, and E. Osuna, “Diagnostic efficacy of biochemical markers in diagnosis postmortem of ischaemic heart disease,” Forensic Sci. Int. 142, 1–7 (2004).
[Crossref]

Petrie, A.

A. Petrie and C. Sabin, Medical Statistics at a Glance (Blackwell, 2005).

Pishak, V. P.

A. G. Ushenko and V. P. Pishak, “Laser polarimetry of biological tissue: principles and applications,” in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, V. V. Tuchin, ed. (Kluwer Academic, 2004), Vol. 1, pp. 93–138.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, V. P. Pishak, and A. P. Peresunko, “Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), pp. 283–322.

Prudente, R.

R. R. Alfano, B. B. Das, J. Cleary, R. Prudente, and E. J. Celmer, “Light sheds light on cancer—distinguishing malignant tumors from benign tissues and tumors,” Bull. NY Acad. Med. 67, 143–150 (1991).

Qi, J.

Qu, J. Y.

J. Y. Qu, “Real time calibrated fluorescence imaging of tissue in vivo by using the combination of fluorescence and cross-polarized reflection” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. 485–487.

Redzinski, J.

B. Chwirot, W. Jedrzejczyk, S. Chwirot, Z. Michniewicz, and J. Redzinski, “Tissue spectroscopy. New generation of optical methods for cancer detection,” Pol. Merkuriusz. Lek. 5, 355–358 (1996).

Rodríguez-Morlensín, M.

F. Martínez Díaz, M. Rodríguez-Morlensín, M. D. Pérez-Cárceles, J. Noguera, A. Luna, and E. Osuna, “Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage,” Histol. Histopathol. 20, 475–481 (2005).

Roskams, T.

M.-A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. M. De Witte, and L. Baert, “Hypericin-based fluorescence diagnosis of bladder carcinoma,” BJU Int. 89, 760–763 (2002).
[Crossref]

Sabin, C.

A. Petrie and C. Sabin, Medical Statistics at a Glance (Blackwell, 2005).

Savenkov, S. N.

S. N. Savenkov, V. V. Marienko, E. A. Oberemok, and O. I. Sydoruk, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 605–607 (2006).
[Crossref]

Singh, M.

Skurichina, M.

M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
[Crossref]

Smith, M. H.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3991, 210–216 (2000).
[Crossref]

Sterenborg, H. J. C. M.

M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
[Crossref]

Stroka, R.

R. Stroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, and E. Unsold, “Laser assisted detection of endogenous porphyrin in malignant diseases,” Proc. SPIE 1641, 99–106 (1991).
[Crossref]

Svanberg, K.

S. Andersson-Engels, C. Klinteberg, K. Svanberg, and S. Svanberg, “In vivo fluorescence imaging for tissue diagnostics,” Phys. Med. Biol. 42, 815–824 (1997).
[Crossref]

Svanberg, S.

S. Andersson-Engels, C. Klinteberg, K. Svanberg, and S. Svanberg, “In vivo fluorescence imaging for tissue diagnostics,” Phys. Med. Biol. 42, 815–824 (1997).
[Crossref]

Sydoruk, O. I.

S. N. Savenkov, V. V. Marienko, E. A. Oberemok, and O. I. Sydoruk, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 605–607 (2006).
[Crossref]

Tanner, E.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3991, 210–216 (2000).
[Crossref]

Tata, D.

R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[Crossref]

Teillac, P.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

Telenga, O. I.

Yu. A. Ushenko, O. I. Telenga, A. P. Peresunko, and O. K. Numan, “New parameter for describing and analyzing the optical-anisotropic properties of biological tissues,” J. Innov. Opt. Health Sci. 4, 463–475 (2011).
[Crossref]

Thiene, G.

C. Basso, F. Calabrese, D. Corrado, and G. Thiene, “Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings,” Cardiovasc. Res. 50, 290–300 (2001).
[Crossref]

Tomashefsky, P.

R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[Crossref]

Tyurin, A. V.

Unsold, E.

R. Stroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, and E. Unsold, “Laser assisted detection of endogenous porphyrin in malignant diseases,” Proc. SPIE 1641, 99–106 (1991).
[Crossref]

Ushenko, A. G.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[Crossref]

A. G. Ushenko and V. P. Pishak, “Laser polarimetry of biological tissue: principles and applications,” in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, V. V. Tuchin, ed. (Kluwer Academic, 2004), Vol. 1, pp. 93–138.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, V. P. Pishak, and A. P. Peresunko, “Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), pp. 283–322.

Ushenko, Y. A.

Y. A. Ushenko, T. M. Boychuk, V. T. Bachynsky, and O. P. Mincer, “Diagnostics of structure and physiological state of birefringent biological tissues: statistical, correlation and topological approaches,” in Handbook of Coherent-Domain Optical Methods (Springer, 2013), pp. 107–148.

Ushenko, Yu. A.

Yu. A. Ushenko, G. B. Bodnar, and G. D. Koval, “Classifying optical properties of surface-and bulk-scattering biological layers with polarization singular states,” J. Innov. Opt. Health Sci. 6, 1350018 (2013).
[Crossref]

Yu. A. Ushenko, “The feasibilities of using the statistical, fractal and singular processing of hominal blood plasma phase images during the diagnostics and differentiation of mammary gland pathological states,” J. Innov. Opt. Health Sci. 5, 1150001 (2012).
[Crossref]

Yu. A. Ushenko, O. I. Telenga, A. P. Peresunko, and O. K. Numan, “New parameter for describing and analyzing the optical-anisotropic properties of biological tissues,” J. Innov. Opt. Health Sci. 4, 463–475 (2011).
[Crossref]

Yu. A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16, 066006 (2011).
[Crossref]

Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of Mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 952423 (2010).

Yu. A. Ushenko, “Statistical structure of polarization-inhomogeneous images of biotissues with different morphological structures,” Ukr. J. Phys. Opt. 6, 63–70 (2005).
[Crossref]

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, V. P. Pishak, and A. P. Peresunko, “Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), pp. 283–322.

Ye, M.

Zenkova, C. Y.

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[Crossref]

Zenkova, C. Yu.

Adv. Opt. Technol. (1)

Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of Mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 952423 (2010).

Arkh Patol. (1)

L. V. Kakturskiĭ, “Clinical morphology of acute coronary syndrome,” Arkh Patol. 69, 16–19 (2007).

Biomed. Opt. Express (1)

BJU Int. (1)

M.-A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. M. De Witte, and L. Baert, “Hypericin-based fluorescence diagnosis of bladder carcinoma,” BJU Int. 89, 760–763 (2002).
[Crossref]

Bull. NY Acad. Med. (1)

R. R. Alfano, B. B. Das, J. Cleary, R. Prudente, and E. J. Celmer, “Light sheds light on cancer—distinguishing malignant tumors from benign tissues and tumors,” Bull. NY Acad. Med. 67, 143–150 (1991).

Cardiovasc. Res. (1)

C. Basso, F. Calabrese, D. Corrado, and G. Thiene, “Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings,” Cardiovasc. Res. 50, 290–300 (2001).
[Crossref]

Chest (1)

M. P. L. Bard, A. Amelink, M. Skurichina, H. V. Noordhoek, R. P. W. Duin, H. J. C. M. Sterenborg, H. C. Hoogsteden, and J. G. J. V. Aerts, “Optical spectroscopy for the classification of malignant lesions of the bronchial tree,” Chest 129, 995–1001 (2006).
[Crossref]

Endoscopy (1)

A. G. Bohorfoush, “Tissue spectroscopy for gastrointestinal diseases,” Endoscopy 28, 372–380 (1996).

Eur. Urol. (1)

M. A. D’Hallewin, L. Bezdetnaya, and F. Guillemin, “Fluorescence detection of bladder cancer: a review,” Eur. Urol. 42, 417–425 (2002).
[Crossref]

Forensic Sci. Int. (1)

M. D. Pérez-Cárceles, J. Noguera, J. L. Jiménez, P. Martínez, A. Luna, and E. Osuna, “Diagnostic efficacy of biochemical markers in diagnosis postmortem of ischaemic heart disease,” Forensic Sci. Int. 142, 1–7 (2004).
[Crossref]

Histol. Histopathol. (1)

F. Martínez Díaz, M. Rodríguez-Morlensín, M. D. Pérez-Cárceles, J. Noguera, A. Luna, and E. Osuna, “Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage,” Histol. Histopathol. 20, 475–481 (2005).

IEEE J. Quantum Electron. (1)

R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[Crossref]

J. Biomed. Opt. (1)

Yu. A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16, 066006 (2011).
[Crossref]

J. Innov. Opt. Health Sci. (3)

Yu. A. Ushenko, O. I. Telenga, A. P. Peresunko, and O. K. Numan, “New parameter for describing and analyzing the optical-anisotropic properties of biological tissues,” J. Innov. Opt. Health Sci. 4, 463–475 (2011).
[Crossref]

Yu. A. Ushenko, “The feasibilities of using the statistical, fractal and singular processing of hominal blood plasma phase images during the diagnostics and differentiation of mammary gland pathological states,” J. Innov. Opt. Health Sci. 5, 1150001 (2012).
[Crossref]

Yu. A. Ushenko, G. B. Bodnar, and G. D. Koval, “Classifying optical properties of surface-and bulk-scattering biological layers with polarization singular states,” J. Innov. Opt. Health Sci. 6, 1350018 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Surg. Res. (1)

L. D. Cassidy, “Basic concepts of statistical analysis for surgical research,” J. Surg. Res. 128, 199–206 (2005).
[Crossref]

J. Urol. (1)

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandchamps, A. Cortesse, P. Teillac, A. Le Duc, and S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

S. Andersson-Engels, C. Klinteberg, K. Svanberg, and S. Svanberg, “In vivo fluorescence imaging for tissue diagnostics,” Phys. Med. Biol. 42, 815–824 (1997).
[Crossref]

Phys. Rev. A (1)

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[Crossref]

Phys. Rev. E (1)

S. N. Savenkov, V. V. Marienko, E. A. Oberemok, and O. I. Sydoruk, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 605–607 (2006).
[Crossref]

Pol. Merkuriusz. Lek. (1)

B. Chwirot, W. Jedrzejczyk, S. Chwirot, Z. Michniewicz, and J. Redzinski, “Tissue spectroscopy. New generation of optical methods for cancer detection,” Pol. Merkuriusz. Lek. 5, 355–358 (1996).

Proc. SPIE (2)

R. Stroka, R. Baumgartner, A. Buser, C. Ell, D. Jocham, and E. Unsold, “Laser assisted detection of endogenous porphyrin in malignant diseases,” Proc. SPIE 1641, 99–106 (1991).
[Crossref]

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3991, 210–216 (2000).
[Crossref]

Quantum Electron. (1)

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[Crossref]

Ukr. J. Phys. Opt. (1)

Yu. A. Ushenko, “Statistical structure of polarization-inhomogeneous images of biotissues with different morphological structures,” Ukr. J. Phys. Opt. 6, 63–70 (2005).
[Crossref]

Other (8)

J. Y. Qu, “Real time calibrated fluorescence imaging of tissue in vivo by using the combination of fluorescence and cross-polarized reflection” in Biomedical Topical Meetings, Vol. 71 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. 485–487.

C. S. Davis, Statistical Methods of the Analysis of Repeated Measurements (Springer-Verlag, 2002).

A. Petrie and C. Sabin, Medical Statistics at a Glance (Blackwell, 2005).

S. Huard, Polarization of Light (Wiley, 1997).

D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003).

A. G. Ushenko and V. P. Pishak, “Laser polarimetry of biological tissue: principles and applications,” in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, V. V. Tuchin, ed. (Kluwer Academic, 2004), Vol. 1, pp. 93–138.

O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, V. P. Pishak, and A. P. Peresunko, “Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), pp. 283–322.

Y. A. Ushenko, T. M. Boychuk, V. T. Bachynsky, and O. P. Mincer, “Diagnostics of structure and physiological state of birefringent biological tissues: statistical, correlation and topological approaches,” in Handbook of Coherent-Domain Optical Methods (Springer, 2013), pp. 107–148.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optical scheme of Stokes polarimeter. 1, solid-state laser; 2, collimator; 3, stationary quarter-wave plate; 4 and 9, polarizer and analyzer, respectively; 5 and 8, mechanically mobile quarter-wave plates; 6, object of investigation; 7, polarization micro-objective; 10, interference bandpass filter; 11, CCD camera; 12, personal computer.

Fig. 2.
Fig. 2.

(1)–(4), (9), and (11) Maps and (5)–(8), (10), and (12) histograms of distributions of Stokes vector parameters, polarization azimuth α*(m×n), and ellipticity β*(m×n) of autofluorescent image of myocardium histological section. Polarization azimuth of probing laser beam α0=00; S0=(1100); λ0=0.405μm. Explanations are in the text.

Fig. 3.
Fig. 3.

(1)–(3) and (7)–(9) Maps and (4)–(6) and (10)–(12) histograms of distributions of intensity If(m×n) of autofluorescent image of (1)–(6) myocardium histological section and (7)–(12) cytological smear from the mucous membrane of cervix uteri, obtained for (1), (4), (7), and (10) α0=00; (2), (5), (8), and (11) α0=900; and (3), (6), (9), and (12) α¯0. Explanations are in the text.

Fig. 4.
Fig. 4.

(1) and (2) Maps and (3) and (4) histograms of distributions of intensity If(m×n) of autofluorescent images of myocardium histological sections with myocardial ischemia [group 1, (1) and (3)] and acute coronary syndrome [group 2, (2) and (4)], obtained for α¯0.

Fig. 5.
Fig. 5.

(1) and (2) Maps and (3) and (4) histograms of distributions of intensity If(m×n) of autofluorescent images of endometrium histological sections with dysplasia [group 3, (1) and (3)] and microinvasive carcinoma [group 4, (2) and (4)] of cervix uteri obtained for α¯0.

Fig. 6.
Fig. 6.

(1) and (2) Maps and (3) and (4) histograms (of distributions of intensity If(m×n) of autofluorescent images of cytological smears of the mucous membrane of cervix uteri with dysplasia [group 5, (1) and (3)] and microinvasive carcinoma [group 6, (2) and (4)].

Fig. 7.
Fig. 7.

Histograms N(Z¯)i of distribution of average values of statistical moments Z¯i, characterizing If(m×n) autofluorescent images of biological layers.

Tables (2)

Tables Icon

Table 1. Average (Z¯i=1;2;3;4) and Standard Deviations (±σ) of Statistical Moments Zi=1;2;3;4 of Autofluorescence Image Intensity Distributions

Tables Icon

Table 2. Operational Characteristics of the Method of Polarization-Variable Autofluorescence

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

{M}={Ψ}{D}=1M12M13M14M21M22M23M24M31M32M33M34M41M42M43M44.
{D}=10000d22d23d240d32d33d340d42d43d44,dik={d22=cos22ρ+sin22ρcosδ;d23=d32=cos2ρsin2ρ(1cosδ);d33=sin22ρ+cos22ρcosδ;d24=d42=sin2ρsinδ;d34=d43=cos2ρsinδ;d44=cosδ;,
{Ψ}=1φ12φ130φ21φ22φ230φ31φ32φ330000φ44,φik={φ12=φ21=(1Δτ)cos2ρ;φ13=φ31=(1Δτ)sin2ρ;φ22=(1+Δτ)cos22ρ+2Δτsin22ρ;φ23=φ32=(1Δτ)sin2ρ;φ33=(1+Δτ)sin22ρ+2Δτcos22ρ;φ44=2Δτ;,
S*={M}S0.
S*=(1cos2α*cos2β*sin2α*cos2β*sin2β*)=(1+M12+M13)1(1M21+M22cos2α0+M23sin2α0M31+M32cos2α0+M33sin2α0M41+M42cos2α0+M43sin2α0).
α*=0.5arctan(M31+M32cos2α0+M33sin2α0M21+M22cos2α0+M23sin2α0),
β*=0.5arcsin(M41+M42cos2α0+M431+M12+M13).
α¯0=ρΔτ=1.
βmin*=0.5arcsin(M42cos2α¯0+M43sin2α¯0)0.
α¯0=0.5arctan(M42M43).
M11=0.5(S10+S190);M12=0.5(S10S190);M13=S145M11;M14=S1M11;M21=0.5(S20+S290);M22=0.5(S20S290);M23=S245M21;M24=S2M21;M31=0.5(S30+S390);M32=0.5(S30S390);M33=S345M31;M34=S3M31;M41=0.5(S40+S490);M42=0.5(S40S490);M43=S445M41;M44=S4M41.
Si=10;45;90;=I00;45;90;+I900;45;90;;Si=20;45;90;=I00;45;90;I900;45;90;;Si=30;45;90;=I450;45;90;I1350;45;90;;Si=40;45;90;=I0;45;90;+I0;45;90;.
α*=0.5arctgSi=3Si=2;β*=0.5arcsinSi=4Si=1.
Z1=1Pj=1PIj;Z2=1Pj=1P(IZ1)j2;Z3=1Z231Pj=1P(I)j3;Z4=1Z241Pj=1P(I)j4,
{ΔZ1=1.17;ΔZ2=1.22;ΔZ3=1.62;ΔZ4=1.79.
{ΔZ1=1.16;ΔZ2=1.24;ΔZ3=1.64;ΔZ4=1.87.
{ΔZ1=1.26;ΔZ2=1.28;ΔZ3=1.71;ΔZ4=1.61.

Metrics