Abstract

The theoretical background of correlation and phase analysis of laser images of human blood plasma with the spatial-frequency selection of the manifestations of mechanisms of linear and circular birefringence of albumin and globulin is presented. The comparative results of measuring the coordinate distributions of the module of complex degree of coherence (CDC) of laser images of blood plasma taken from the patients of three groups—healthy patients (donors), the patients suffering from the rheumatoid arthritis, and those with stomach cancer (adenocarcinoma)—are shown. The values and ranges of change of the statistical (moments of the first–fourth orders), correlation (excess of autocorrelation functions), and fractal (slopes of approximating curves and dispersion of the extremes of logarithmic dependencies of power spectra) parameters of CDC coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of the inflammation and oncological state are determined.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
    [CrossRef]
  2. O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
    [CrossRef]
  3. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007), paper PM 166.
  4. A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
    [CrossRef]
  5. A. Yu. Seteikin, “Monte Carlo analysis of the propagation of laser radiation in multilayer biomaterials,” Russ. Phys. J. 48, 280–284 (2005).
    [CrossRef]
  6. J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.
  7. S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation,” Appl. Opt. 44, 5463–5467 (2005).
    [CrossRef]
  8. S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Jones matrix imaging of biological samples using parallel-detecting polarization-sensitive Fourier domain optical coherence tomography,” Opt. Rev. 12, 146–148 (2005).
    [CrossRef]
  9. S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1142–1147 (2006).
    [CrossRef]
  10. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
    [CrossRef]
  11. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
    [CrossRef]
  12. V. V. Tuchin, “A clear vision for laser diagnostics,” IEEE J. Select. Top. Quantum Electron. 13, 1621–1628 (2007).
    [CrossRef]
  13. A. G. Ushenko, “Laser polarimetry of polarization-phase statistical moments of the object field of optically anisotropic scattering layers,” Opt. Spectrosc. 91, 313–316 (2001).
    [CrossRef]
  14. O. V. Angel’skiĭ, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
    [CrossRef]
  15. A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
    [CrossRef]
  16. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 4, 9–38 (2011).
  17. O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
    [CrossRef]
  18. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7, 941–951 (1998).
    [CrossRef]
  19. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A. 312, 263–267 (2003).
  20. J. Tervo, T. Setala, and A. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003).
    [CrossRef]
  21. J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29, 536–538 (2004).
    [CrossRef]
  22. O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
    [CrossRef]
  23. Y. O. Ushenko, Y. Ya. Tomka, I. Z. Misevitch, V. V. Istratiy, and O. I. Telenga, “Complex degree of mutual anisotropy of biological liquid crystals nets,” Opt. Eng. 50, 039001 (2011).
    [CrossRef]
  24. Yu. A. Ushenko, Y. Y. Tomka, and A. V. Dubolazov, “Complex degree of mutual anisotropy of extracellular matrix of biological tissues,” Opt. Spectrosc. 110, 814–819 (2011).
    [CrossRef]
  25. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).
  26. J. W. Goodman, Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

2012 (2)

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[CrossRef]

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[CrossRef]

2011 (3)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 4, 9–38 (2011).

Y. O. Ushenko, Y. Ya. Tomka, I. Z. Misevitch, V. V. Istratiy, and O. I. Telenga, “Complex degree of mutual anisotropy of biological liquid crystals nets,” Opt. Eng. 50, 039001 (2011).
[CrossRef]

Yu. A. Ushenko, Y. Y. Tomka, and A. V. Dubolazov, “Complex degree of mutual anisotropy of extracellular matrix of biological tissues,” Opt. Spectrosc. 110, 814–819 (2011).
[CrossRef]

2007 (1)

V. V. Tuchin, “A clear vision for laser diagnostics,” IEEE J. Select. Top. Quantum Electron. 13, 1621–1628 (2007).
[CrossRef]

2006 (1)

2005 (4)

S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation,” Appl. Opt. 44, 5463–5467 (2005).
[CrossRef]

A. Yu. Seteikin, “Monte Carlo analysis of the propagation of laser radiation in multilayer biomaterials,” Russ. Phys. J. 48, 280–284 (2005).
[CrossRef]

S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Jones matrix imaging of biological samples using parallel-detecting polarization-sensitive Fourier domain optical coherence tomography,” Opt. Rev. 12, 146–148 (2005).
[CrossRef]

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

2004 (2)

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[CrossRef]

J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29, 536–538 (2004).
[CrossRef]

2003 (2)

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A. 312, 263–267 (2003).

J. Tervo, T. Setala, and A. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003).
[CrossRef]

2002 (2)

2001 (1)

A. G. Ushenko, “Laser polarimetry of polarization-phase statistical moments of the object field of optically anisotropic scattering layers,” Opt. Spectrosc. 91, 313–316 (2001).
[CrossRef]

2000 (2)

O. V. Angel’skiĭ, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

1999 (1)

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

1998 (1)

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7, 941–951 (1998).
[CrossRef]

Angel’skii, O. V.

O. V. Angel’skiĭ, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Angelsky, O. V.

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[CrossRef]

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[CrossRef]

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Archelyuk, A. D.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Arkhelyuk, A. D.

O. V. Angel’skiĭ, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 4, 9–38 (2011).

Bekshaev, A. Y.

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[CrossRef]

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[CrossRef]

Borghi, R.

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7, 941–951 (1998).
[CrossRef]

Burch, J. M.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

Burkovets, D. N.

O. V. Angel’skiĭ, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Cense, B.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[CrossRef]

de Boer, J. F.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[CrossRef]

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Dogariu, A.

Dubolazov, A. V.

Yu. A. Ushenko, Y. Y. Tomka, and A. V. Dubolazov, “Complex degree of mutual anisotropy of extracellular matrix of biological tissues,” Opt. Spectrosc. 110, 814–819 (2011).
[CrossRef]

Ducros, M. G.

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Ellis, J.

Endo, T.

S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1142–1147 (2006).
[CrossRef]

S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Jones matrix imaging of biological samples using parallel-detecting polarization-sensitive Fourier domain optical coherence tomography,” Opt. Rev. 12, 146–148 (2005).
[CrossRef]

Ermolenko, S. B.

O. V. Angel’skiĭ, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Friberg, A.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 4, 9–38 (2011).

Gerrard, A.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

Goodman, J. W.

J. W. Goodman, Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

Gori, F.

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7, 941–951 (1998).
[CrossRef]

Guattari, G.

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7, 941–951 (1998).
[CrossRef]

Hanson, S. G.

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[CrossRef]

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[CrossRef]

Istratiy, V. V.

Y. O. Ushenko, Y. Ya. Tomka, I. Z. Misevitch, V. V. Istratiy, and O. I. Telenga, “Complex degree of mutual anisotropy of biological liquid crystals nets,” Opt. Eng. 50, 039001 (2011).
[CrossRef]

Itoh, M.

Jiao, S.

Makita, S.

Maksimyak, A. P.

Maksimyak, P. P.

Milner, T. E.

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Misevitch, I. Z.

Y. O. Ushenko, Y. Ya. Tomka, I. Z. Misevitch, V. V. Istratiy, and O. I. Telenga, “Complex degree of mutual anisotropy of biological liquid crystals nets,” Opt. Eng. 50, 039001 (2011).
[CrossRef]

Mokhun, I.

Nelson, J. S.

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Park, B. H.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[CrossRef]

Pierce, M. C.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[CrossRef]

Santarsiero, M.

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7, 941–951 (1998).
[CrossRef]

Setala, T.

Seteikin, A. Yu.

A. Yu. Seteikin, “Monte Carlo analysis of the propagation of laser radiation in multilayer biomaterials,” Russ. Phys. J. 48, 280–284 (2005).
[CrossRef]

Srinivas, S. M.

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

Stoica, G.

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[CrossRef]

Sutoh, Y.

Telenga, O. I.

Y. O. Ushenko, Y. Ya. Tomka, I. Z. Misevitch, V. V. Istratiy, and O. I. Telenga, “Complex degree of mutual anisotropy of biological liquid crystals nets,” Opt. Eng. 50, 039001 (2011).
[CrossRef]

Tervo, J.

Todorovic, M.

Tomka, Y. Y.

Yu. A. Ushenko, Y. Y. Tomka, and A. V. Dubolazov, “Complex degree of mutual anisotropy of extracellular matrix of biological tissues,” Opt. Spectrosc. 110, 814–819 (2011).
[CrossRef]

Tomka, Y. Ya.

Y. O. Ushenko, Y. Ya. Tomka, I. Z. Misevitch, V. V. Istratiy, and O. I. Telenga, “Complex degree of mutual anisotropy of biological liquid crystals nets,” Opt. Eng. 50, 039001 (2011).
[CrossRef]

Tomka, Yu. Ya.

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 4, 9–38 (2011).

V. V. Tuchin, “A clear vision for laser diagnostics,” IEEE J. Select. Top. Quantum Electron. 13, 1621–1628 (2007).
[CrossRef]

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007), paper PM 166.

Tyurin, A. V.

Ushenko, A. G.

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

A. G. Ushenko, “Laser polarimetry of polarization-phase statistical moments of the object field of optically anisotropic scattering layers,” Opt. Spectrosc. 91, 313–316 (2001).
[CrossRef]

A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

O. V. Angel’skiĭ, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Ushenko, Y. O.

Y. O. Ushenko, Y. Ya. Tomka, I. Z. Misevitch, V. V. Istratiy, and O. I. Telenga, “Complex degree of mutual anisotropy of biological liquid crystals nets,” Opt. Eng. 50, 039001 (2011).
[CrossRef]

Ushenko, Ye. G.

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Ushenko, Yu. A.

Yu. A. Ushenko, Y. Y. Tomka, and A. V. Dubolazov, “Complex degree of mutual anisotropy of extracellular matrix of biological tissues,” Opt. Spectrosc. 110, 814–819 (2011).
[CrossRef]

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Vicalvi, S.

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7, 941–951 (1998).
[CrossRef]

Wang, L. V.

Wang, L.-H.

X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

Wang, X.

X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

Wolf, E.

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A. 312, 263–267 (2003).

Yasuno, Y.

Yatagai, T.

Zenkova, C. Y.

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[CrossRef]

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[CrossRef]

Appl. Opt. (2)

IEEE J. Select. Top. Quantum Electron. (1)

V. V. Tuchin, “A clear vision for laser diagnostics,” IEEE J. Select. Top. Quantum Electron. 13, 1621–1628 (2007).
[CrossRef]

J. Biomed. Opt. (2)

X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[CrossRef]

J. Innovative Opt. Health Sci. (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 4, 9–38 (2011).

J. Phys. D (1)

O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Opt. Eng. (1)

Y. O. Ushenko, Y. Ya. Tomka, I. Z. Misevitch, V. V. Istratiy, and O. I. Telenga, “Complex degree of mutual anisotropy of biological liquid crystals nets,” Opt. Eng. 50, 039001 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Rev. (1)

S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Jones matrix imaging of biological samples using parallel-detecting polarization-sensitive Fourier domain optical coherence tomography,” Opt. Rev. 12, 146–148 (2005).
[CrossRef]

Opt. Spectrosc. (4)

A. G. Ushenko, “Laser polarimetry of polarization-phase statistical moments of the object field of optically anisotropic scattering layers,” Opt. Spectrosc. 91, 313–316 (2001).
[CrossRef]

O. V. Angel’skiĭ, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000).
[CrossRef]

A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000).
[CrossRef]

Yu. A. Ushenko, Y. Y. Tomka, and A. V. Dubolazov, “Complex degree of mutual anisotropy of extracellular matrix of biological tissues,” Opt. Spectrosc. 110, 814–819 (2011).
[CrossRef]

Phys. Lett. A. (1)

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A. 312, 263–267 (2003).

Phys. Rev. A (1)

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[CrossRef]

Pure Appl. Opt. (1)

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7, 941–951 (1998).
[CrossRef]

Quantum Electron. (1)

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Russ. Phys. J. (1)

A. Yu. Seteikin, “Monte Carlo analysis of the propagation of laser radiation in multilayer biomaterials,” Russ. Phys. J. 48, 280–284 (2005).
[CrossRef]

Other (4)

J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

J. W. Goodman, Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007), paper PM 166.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical scheme of Fourier polarimeter, where 1 is the He–Ne laser; 2 is the collimator; 3 is the stationary quarter wave plate; 5, 10 are the rotating quarter wave plates; 4, 11 are the polarizer and analyzer; 6 is the object of investigation; 7, 9 are the polarization micro-objectives; 8 is the vignetting diaphragm; 12 is the CCD camera; and 13 is the computer.

Fig. 2.
Fig. 2.

Coordinate structure [(a), (e), (i)], histograms [(b), (f), (j)], autocorrelation functions [(c), (g), (k)], and logarithmic dependencies of power spectra [(d), (h), (l)] of CDC distributions of the images of blood plasma of the patients from Group 1 [(a), (b), (c), (d)], Group 2 [(e), (f), (g), (h)], and Group 3 [(i), (j), (k), (l)].

Fig. 3.
Fig. 3.

Coordinate structure [(a), (e), (i)], histograms [(b), (f), (j)], autocorrelation functions [(c), (g), (k)], and logarithmic dependencies of power spectra [(d), (h), (l)] of CDC distributions |μ(δ,r1,r2)| of the points of spatial-frequency filtered laser images of large-scale polycrystalline network of albumin of blood plasma layers of the patients from Group 1 [(a), (b), (c), (d)], Group 2 [(e), (f), (g), (h)], and Group 3 [(i), (j), (k), (l)].

Fig. 4.
Fig. 4.

Coordinate structure [(a), (e), (i)], histograms [(b), (f), (j)], autocorrelation functions [(c), (g), (k)], and logarithmic dependencies of power spectra [(d), (h), (l)] of CDC distributions |μ(θ,r1,r2)| of the points of spatial-frequency filtered laser images of small-scale polycrystalline network of globulin of blood plasma layers of the patients from Group 1 [(a), (b), (c), (d)], Group 2 [(e), (f), (g), (h)], and Group 3 [(i), (j), (k), (l)].

Tables (2)

Tables Icon

Table 1. Parameters P of Statistical, Correlation, and Self-Similar Structure of Coordinate Distributions of CDC Laser Images of Polycrystalline Networks of Protein Networks of Blood Plasma

Tables Icon

Table 2. Parameters P of Statistical, Correlation and Self-Similar Structure of Coordinate Distributions of CDC of Laser Images of Protein Polycrystalline Networks of Blood Plasma

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

{D}={Q}{A},
{Q}=[sin2ρ+cos2ρexp(iδ)][sinρcosρ(1exp(iδ))][sinρcosρ(1exp(iδ))][cos2ρ+sin2ρexp(iδ)];
{A}=cosθsinθsinθcosθ,
{Q}=[sin2ρ+cos2ρ(1iδ)][iδsinρcosρ.][iδsinρcosρ.][cos2ρ+sin2ρ(1iδ)];
{A}=1θθ1.
μ(r1,r2)=[Tr(W(r1,r2)W(r1,r2))TrW(r1,r1)·TrW(r2,r2)].
W(r1,r2)=[Ex*(r1)Ex(r2)Ex*(r1)Ey(r2)Ey*(r1)Ex(r2)Ey*(r1)Ey(r2)],
Wout(r1,r2)=D(r1)·Win(r1,r2)·D(r2).
Win(r1,r2)=[Ex*(r1)Ex(r2)Ex*(r1)Ey(r2)Ey*(r1)Ex(r2)Ey*(r1)Ey(r2)].
{Ex(0°)=1iδcosρ(cosρ+θsinρ);Ey(0°)=θiδsinρ(cosρ+θsinρ).
μ(r1,r2)=1(a+ib)(cos2Δρ12cosΔθ12+sin2Δρ12sinΔθ12exp(i·2Δδ12)).
μ(r1,r2)=1(exp(i2Δδ12)sinΔθ12+cosΔθ12).
|μ(r1,r2)|=(1+2Δδ12Δθ12)1.
E=0,5{P2}{Φ2}{D}{Φ1}{P1}E0.
I=EE*=(1θ)2δ2.
Ux(Xλf,Yλf)Ux(ν,μ)=1iλfEx(x,y)exp[i2π(xν+yμ)]dxdy;
Uy(Xλf,Yλf)Uy(ν,μ)=1iλfEy(x,y)exp[i2π(xν+yμ)]dxdy.
{U^δ(ν,μ)=R(Δν,Δμ)U(ν,μ);U˙θ(ν,μ)=R1(Δν,Δμ)U(ν,μ).
{[E^x(δ,x,y)E˙x(θ,x,y)]=FT1[R(Δν,Δμ)U^x(ν,μ)R1(Δν,Δμ)U˙x(ν,μ)];[E^y(δ,x,y)E˙y(θ,x,y)]=FT1[R(Δν,Δμ)U^y(ν,μ)R1(Δν,Δμ)U˙y(ν,μ)].
δ(x,y)I(R,x,y),
θ(x,y)I(R1,x,y).
|μ(δ,r1,r2)|(1+2Δδ12)1,
|μ(θ,r1,r2)|(1+2Δθ12)1.
(r11r11+Δrr1mrn1rn1+Δrrnm),
μδ,θ((r11;r11+Δr)(r1m1,r1m1+Δr)(rn1,rn1+Δr)(rnm1,rnm1+Δr))
Z1μ=1Ni=1N|μi|,Z2μ=1Ni=1Nμi2,Z3μ=1(Z2μ)31Ni=1Nμi3,Z4μ=1(Z2μ)21Ni=1Nμi4.
Ki=1tonμ(Δm)=limm01m1m[μ(m)][μ(mΔm)]dm.
Kμ(Δm)=i=1nKiμ(Δm)n.
Q=i=1N(K(Δm))i4(i=1N(K(Δm))i2)2.
Dμ=1Ni=1N[logJ(μ)logd1]i2.

Metrics