Abstract

We report the generation of shock waves in a disperse medium with absorbing particles of black pigment in the water using continuous laser radiation. As a result of the experimental investigation it was found that the illuminating beam diameter growth at the constant laser power results in the decrease of the signals’ modulation frequencies, improving their stability and increasing their amplitudes. In turn, the decrease of the signal’s modulation frequency is caused by the growth of time, which is needed for heating the medium to the critical temperature of cavitation. Improving the stability and the increase of optical and acoustic signal amplitudes take place, due to the growth of the medium volume and hence the number of pigment particles that participate in cavitation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription