Abstract

A recently proposed technique representing a combination of digital imaging laser interferometry with a classical four-point bending method is applied to a canonical nonlinear optical crystal, LiNbO3, to precisely determine a full matrix of its piezo-optic coefficients (POCs). The contribution of a secondary piezo-optic effect to the POCs is investigated experimentally and analyzed theoretically. Based on the POCs thus obtained, a full matrix of strain-optic coefficients (SOCs) is calculated and the appropriate errors are estimated. A comparison of our experimental errors for the POCs and SOCs with the known reference data allows us to claim the present technique as the most precise.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. I. Grakh and A. F. Mozhanskaya, “A type of mechanically anisotropic, optically sensitive material,” Mekhanika Polimerov 5, 835–839 (1971).
  2. Y.-J. Weber, “Determination of internal strain by optical measurements,” Phys. Rev. B 51, 12209–12215 (1995).
    [CrossRef]
  3. T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).
  4. I. I. Slezinger, A. N. Alievskaya, and Yu. V. Mironov, “Piezo-optic devices,” Izmeritelnaya Tekhnika 12, 17–19 (1985).
  5. M. Billardon and J. Badoz, “Birefringence modulator,” C. R. Acad. Sci. Ser. B 262, 1672–1675 (1966).
  6. J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long-known effect,” J. Opt. Soc. Am. 59, 950–954 (1969).
  7. B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, 1990).
  8. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Fundamentals of Acoustooptics (Radio i Sviaz’, 1985).
  9. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).
  10. M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).
  11. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  12. F. Pockels, Lehrbuch der Kristallooptik (Teubner Berlin, 1906).
  13. B. H. Mytsyk, “Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. Part I. Methodology for the studies of piezo-optical effect,” Ukr. J. Phys. Opt. 4, 1–26 (2003).
    [CrossRef]
  14. Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezo-optic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009).
    [CrossRef]
  15. I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezo-optic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011).
    [CrossRef]
  16. I. Skab, “Optical anisotropy induced by torsion stresses in the crystals belonging to point symmetry groups 3 and 3¯,” Ukr. J. Phys. Opt. 13, 158–164 (2012).
    [CrossRef]
  17. Yu. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “On determination of sign of the piezo-optic coefficients using torsion method,” Appl. Opt. 50, 2512–2518 (2011).
    [CrossRef]
  18. O. Krupych, V. Savaryn, I. Skab, and R. Vlokh, “Interferometric measurements of piezo-optic coefficients by means of four-point bending method,” Ukr. J. Phys. Opt. 12, 150–159 (2011).
    [CrossRef]
  19. O. Krupych, V. Savaryn, A. Krupych, I. Klymiv, and R. Vlokh, “Determination of piezo-optic coefficients of crystals by means of four-point bending,” Appl. Opt. 52, 4054–4061 (2013).
    [CrossRef]
  20. S. P. Timoshenko, Strength of Materials (Izdatelstvo NTL, 1965).
  21. R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
    [CrossRef]
  22. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1975).
  23. “Standards on piezoelectric crystals,” Proc. Inst. Radio Eng.37, 1378–1395 (1949).
  24. B. G. Mytsyk, A. S. Andrushchak, N. M. Demyanyshyn, Y. P. Kost’, A. V. Kityk, P. Mandracci, and W. Schranz, “Piezo-optic coefficients of MgO-doped LiNbO3 crystals,” Appl. Opt. 48, 1904–1911 (2009).
    [CrossRef]
  25. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [CrossRef]
  26. B. Mytsyk, N. Demyanyshyn, I. Martynyuk-Lototska, and R. Vlokh, “Piezo-optic, photoelastic, and acousto-optic properties of SrB4O7 crystals,” Appl. Opt. 50, 3889–3895 (2011).
    [CrossRef]
  27. A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009).
    [CrossRef]
  28. L. P. Avakyants, D. F. Kiselev, and N. N. Shchitkov, “Measurement of the photoelastic coefficients of lithium niobate single crystals,” Sov. Phys. 18, 899–901 (1976).

2013

2012

I. Skab, “Optical anisotropy induced by torsion stresses in the crystals belonging to point symmetry groups 3 and 3¯,” Ukr. J. Phys. Opt. 13, 158–164 (2012).
[CrossRef]

2011

O. Krupych, V. Savaryn, I. Skab, and R. Vlokh, “Interferometric measurements of piezo-optic coefficients by means of four-point bending method,” Ukr. J. Phys. Opt. 12, 150–159 (2011).
[CrossRef]

I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezo-optic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011).
[CrossRef]

Yu. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “On determination of sign of the piezo-optic coefficients using torsion method,” Appl. Opt. 50, 2512–2518 (2011).
[CrossRef]

B. Mytsyk, N. Demyanyshyn, I. Martynyuk-Lototska, and R. Vlokh, “Piezo-optic, photoelastic, and acousto-optic properties of SrB4O7 crystals,” Appl. Opt. 50, 3889–3895 (2011).
[CrossRef]

2009

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009).
[CrossRef]

B. G. Mytsyk, A. S. Andrushchak, N. M. Demyanyshyn, Y. P. Kost’, A. V. Kityk, P. Mandracci, and W. Schranz, “Piezo-optic coefficients of MgO-doped LiNbO3 crystals,” Appl. Opt. 48, 1904–1911 (2009).
[CrossRef]

Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezo-optic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009).
[CrossRef]

2003

B. H. Mytsyk, “Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. Part I. Methodology for the studies of piezo-optical effect,” Ukr. J. Phys. Opt. 4, 1–26 (2003).
[CrossRef]

1995

Y.-J. Weber, “Determination of internal strain by optical measurements,” Phys. Rev. B 51, 12209–12215 (1995).
[CrossRef]

1985

I. I. Slezinger, A. N. Alievskaya, and Yu. V. Mironov, “Piezo-optic devices,” Izmeritelnaya Tekhnika 12, 17–19 (1985).

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

1976

L. P. Avakyants, D. F. Kiselev, and N. N. Shchitkov, “Measurement of the photoelastic coefficients of lithium niobate single crystals,” Sov. Phys. 18, 899–901 (1976).

1971

I. I. Grakh and A. F. Mozhanskaya, “A type of mechanically anisotropic, optically sensitive material,” Mekhanika Polimerov 5, 835–839 (1971).

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

1969

1966

M. Billardon and J. Badoz, “Birefringence modulator,” C. R. Acad. Sci. Ser. B 262, 1672–1675 (1966).

Alievskaya, A. N.

I. I. Slezinger, A. N. Alievskaya, and Yu. V. Mironov, “Piezo-optic devices,” Izmeritelnaya Tekhnika 12, 17–19 (1985).

Andrushchak, A. S.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009).
[CrossRef]

B. G. Mytsyk, A. S. Andrushchak, N. M. Demyanyshyn, Y. P. Kost’, A. V. Kityk, P. Mandracci, and W. Schranz, “Piezo-optic coefficients of MgO-doped LiNbO3 crystals,” Appl. Opt. 48, 1904–1911 (2009).
[CrossRef]

Auld, B. A.

B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, 1990).

Avakyants, L. P.

L. P. Avakyants, D. F. Kiselev, and N. N. Shchitkov, “Measurement of the photoelastic coefficients of lithium niobate single crystals,” Sov. Phys. 18, 899–901 (1976).

Badoz, J.

M. Billardon and J. Badoz, “Birefringence modulator,” C. R. Acad. Sci. Ser. B 262, 1672–1675 (1966).

Balakshii, V. I.

V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Fundamentals of Acoustooptics (Radio i Sviaz’, 1985).

Billardon, M.

M. Billardon and J. Badoz, “Birefringence modulator,” C. R. Acad. Sci. Ser. B 262, 1672–1675 (1966).

Chirkov, L. E.

V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Fundamentals of Acoustooptics (Radio i Sviaz’, 1985).

Demyanyshyn, N.

Demyanyshyn, N. M.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Grakh, I. I.

I. I. Grakh and A. F. Mozhanskaya, “A type of mechanically anisotropic, optically sensitive material,” Mekhanika Polimerov 5, 835–839 (1971).

Kemp, J. C.

Kiselev, D. F.

L. P. Avakyants, D. F. Kiselev, and N. N. Shchitkov, “Measurement of the photoelastic coefficients of lithium niobate single crystals,” Sov. Phys. 18, 899–901 (1976).

Kityk, A. V.

B. G. Mytsyk, A. S. Andrushchak, N. M. Demyanyshyn, Y. P. Kost’, A. V. Kityk, P. Mandracci, and W. Schranz, “Piezo-optic coefficients of MgO-doped LiNbO3 crystals,” Appl. Opt. 48, 1904–1911 (2009).
[CrossRef]

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009).
[CrossRef]

Klymiv, I.

Kost’, Y. P.

Krupych, A.

Krupych, O.

O. Krupych, V. Savaryn, A. Krupych, I. Klymiv, and R. Vlokh, “Determination of piezo-optic coefficients of crystals by means of four-point bending,” Appl. Opt. 52, 4054–4061 (2013).
[CrossRef]

O. Krupych, V. Savaryn, I. Skab, and R. Vlokh, “Interferometric measurements of piezo-optic coefficients by means of four-point bending method,” Ukr. J. Phys. Opt. 12, 150–159 (2011).
[CrossRef]

Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezo-optic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009).
[CrossRef]

Kvasnyuk, O.

Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezo-optic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009).
[CrossRef]

Laba, H. P.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009).
[CrossRef]

Maksymuk, O.

Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezo-optic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009).
[CrossRef]

Mandracci, P.

Martynyuk-Lototska, I.

Mironov, Yu. V.

I. I. Slezinger, A. N. Alievskaya, and Yu. V. Mironov, “Piezo-optic devices,” Izmeritelnaya Tekhnika 12, 17–19 (1985).

Mozhanskaya, A. F.

I. I. Grakh and A. F. Mozhanskaya, “A type of mechanically anisotropic, optically sensitive material,” Mekhanika Polimerov 5, 835–839 (1971).

Mys, O.

Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezo-optic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009).
[CrossRef]

Mytsyk, B.

Mytsyk, B. G.

B. G. Mytsyk, A. S. Andrushchak, N. M. Demyanyshyn, Y. P. Kost’, A. V. Kityk, P. Mandracci, and W. Schranz, “Piezo-optic coefficients of MgO-doped LiNbO3 crystals,” Appl. Opt. 48, 1904–1911 (2009).
[CrossRef]

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009).
[CrossRef]

Mytsyk, B. H.

B. H. Mytsyk, “Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. Part I. Methodology for the studies of piezo-optical effect,” Ukr. J. Phys. Opt. 4, 1–26 (2003).
[CrossRef]

Narasimhamurty, T. S.

T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).

Parygin, V. N.

V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Fundamentals of Acoustooptics (Radio i Sviaz’, 1985).

Pockels, F.

F. Pockels, Lehrbuch der Kristallooptik (Teubner Berlin, 1906).

Sahraoui, B.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009).
[CrossRef]

Savaryn, V.

O. Krupych, V. Savaryn, A. Krupych, I. Klymiv, and R. Vlokh, “Determination of piezo-optic coefficients of crystals by means of four-point bending,” Appl. Opt. 52, 4054–4061 (2013).
[CrossRef]

O. Krupych, V. Savaryn, I. Skab, and R. Vlokh, “Interferometric measurements of piezo-optic coefficients by means of four-point bending method,” Ukr. J. Phys. Opt. 12, 150–159 (2011).
[CrossRef]

I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezo-optic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011).
[CrossRef]

Yu. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “On determination of sign of the piezo-optic coefficients using torsion method,” Appl. Opt. 50, 2512–2518 (2011).
[CrossRef]

Schranz, W.

Shaskolskaya, M. P.

Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1975).

M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).

Shchitkov, N. N.

L. P. Avakyants, D. F. Kiselev, and N. N. Shchitkov, “Measurement of the photoelastic coefficients of lithium niobate single crystals,” Sov. Phys. 18, 899–901 (1976).

Sirotin, Yu. I.

Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1975).

Skab, I.

I. Skab, “Optical anisotropy induced by torsion stresses in the crystals belonging to point symmetry groups 3 and 3¯,” Ukr. J. Phys. Opt. 13, 158–164 (2012).
[CrossRef]

Yu. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “On determination of sign of the piezo-optic coefficients using torsion method,” Appl. Opt. 50, 2512–2518 (2011).
[CrossRef]

I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezo-optic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011).
[CrossRef]

O. Krupych, V. Savaryn, I. Skab, and R. Vlokh, “Interferometric measurements of piezo-optic coefficients by means of four-point bending method,” Ukr. J. Phys. Opt. 12, 150–159 (2011).
[CrossRef]

Slezinger, I. I.

I. I. Slezinger, A. N. Alievskaya, and Yu. V. Mironov, “Piezo-optic devices,” Izmeritelnaya Tekhnika 12, 17–19 (1985).

Smaga, I.

I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezo-optic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011).
[CrossRef]

Yu. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “On determination of sign of the piezo-optic coefficients using torsion method,” Appl. Opt. 50, 2512–2518 (2011).
[CrossRef]

Smith, R. T.

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

Solskii, I. M.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009).
[CrossRef]

Stroud, R.

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

Timoshenko, S. P.

S. P. Timoshenko, Strength of Materials (Izdatelstvo NTL, 1965).

Vasylkiv, Yu.

Yu. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “On determination of sign of the piezo-optic coefficients using torsion method,” Appl. Opt. 50, 2512–2518 (2011).
[CrossRef]

I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezo-optic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011).
[CrossRef]

Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezo-optic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009).
[CrossRef]

Vlokh, R.

O. Krupych, V. Savaryn, A. Krupych, I. Klymiv, and R. Vlokh, “Determination of piezo-optic coefficients of crystals by means of four-point bending,” Appl. Opt. 52, 4054–4061 (2013).
[CrossRef]

I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezo-optic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011).
[CrossRef]

O. Krupych, V. Savaryn, I. Skab, and R. Vlokh, “Interferometric measurements of piezo-optic coefficients by means of four-point bending method,” Ukr. J. Phys. Opt. 12, 150–159 (2011).
[CrossRef]

Yu. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “On determination of sign of the piezo-optic coefficients using torsion method,” Appl. Opt. 50, 2512–2518 (2011).
[CrossRef]

B. Mytsyk, N. Demyanyshyn, I. Martynyuk-Lototska, and R. Vlokh, “Piezo-optic, photoelastic, and acousto-optic properties of SrB4O7 crystals,” Appl. Opt. 50, 3889–3895 (2011).
[CrossRef]

Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezo-optic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009).
[CrossRef]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Weber, Y.-J.

Y.-J. Weber, “Determination of internal strain by optical measurements,” Phys. Rev. B 51, 12209–12215 (1995).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Welsh, F. S.

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

Xu, J.

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

Yurkevych, O. V.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. A

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

C. R. Acad. Sci. Ser. B

M. Billardon and J. Badoz, “Birefringence modulator,” C. R. Acad. Sci. Ser. B 262, 1672–1675 (1966).

Cryst. Res. Technol.

I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezo-optic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011).
[CrossRef]

Izmeritelnaya Tekhnika

I. I. Slezinger, A. N. Alievskaya, and Yu. V. Mironov, “Piezo-optic devices,” Izmeritelnaya Tekhnika 12, 17–19 (1985).

J. Appl. Phys.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009).
[CrossRef]

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

J. Opt. Soc. Am.

Mekhanika Polimerov

I. I. Grakh and A. F. Mozhanskaya, “A type of mechanically anisotropic, optically sensitive material,” Mekhanika Polimerov 5, 835–839 (1971).

Phys. Rev. B

Y.-J. Weber, “Determination of internal strain by optical measurements,” Phys. Rev. B 51, 12209–12215 (1995).
[CrossRef]

Sov. Phys.

L. P. Avakyants, D. F. Kiselev, and N. N. Shchitkov, “Measurement of the photoelastic coefficients of lithium niobate single crystals,” Sov. Phys. 18, 899–901 (1976).

Ukr. J. Phys. Opt.

B. H. Mytsyk, “Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. Part I. Methodology for the studies of piezo-optical effect,” Ukr. J. Phys. Opt. 4, 1–26 (2003).
[CrossRef]

Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezo-optic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009).
[CrossRef]

I. Skab, “Optical anisotropy induced by torsion stresses in the crystals belonging to point symmetry groups 3 and 3¯,” Ukr. J. Phys. Opt. 13, 158–164 (2012).
[CrossRef]

O. Krupych, V. Savaryn, I. Skab, and R. Vlokh, “Interferometric measurements of piezo-optic coefficients by means of four-point bending method,” Ukr. J. Phys. Opt. 12, 150–159 (2011).
[CrossRef]

Other

T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).

B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, 1990).

V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Fundamentals of Acoustooptics (Radio i Sviaz’, 1985).

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

F. Pockels, Lehrbuch der Kristallooptik (Teubner Berlin, 1906).

Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1975).

“Standards on piezoelectric crystals,” Proc. Inst. Radio Eng.37, 1378–1395 (1949).

S. P. Timoshenko, Strength of Materials (Izdatelstvo NTL, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics