Abstract

Support elements as key components in performing the opto-mechanical function have been an important topic for optical system development. Focusing on a rotation prism with a large aperture and asymmetric loading, a radial multi-segment support is developed to solve the dynamic mounting issue. In order to explore the actual surface deformations over the full rotation, a novel dynamic analysis method to extract the transient load spectrum is established to access the surface deformations, including dynamic load extraction to connect varying loads with corresponding rotation positions, typical position analysis to obtain maximum deformation values, and vibration analysis. The results show that a maximum peak-to-valley value on the plane side reaches 103.16 nm when the prism rotates to 159.84°, and that of the wedge side is 74.38 nm when the prism rotates to 213.84°, both of which are less than λ/4 (λ=632.8nm). However, when excited by the external loads with response frequency, the surface deformations become more serious. Because the dynamic characteristics obtained can reflect the actual usage situation, the proposed method is preferable for system development.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Liu, “Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations [Invited],” Appl. Opt. 52, 579–599 (2013).
    [CrossRef]
  2. W. Cuypers, N. VanGestel, A. Voet, J.-P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng. 47, 292–300 (2009).
    [CrossRef]
  3. G. Moretto, J. R. Kuhn, and P. R. Goode, “Reviewing off-axis telescope concepts. A quest for highest possible dynamic range for photometry and angular resolution,” Proc. SPIE 8444, 8444OY (2012).
  4. Y. Koyama, E. Morikawa, K. Shiratama, R. Suzuki, and Y. Yasuda, “Optical terminal for NeLS in-orbit demonstration,” Proc. SPIE 5338, 29–36 (2004).
    [CrossRef]
  5. A. Li, X. Jiang, J. Sun, Y. Bian, L. Wang, and L. Liu, “Radial support analysis for large-aperture rotating wedge prism,” Opt. Laser Technol. 44, 1881–1888 (2012).
    [CrossRef]
  6. J. Liu, L. Wang, T. Jiang, W. Jiao, and J. B. Jang, “Effects of environmental temperature on the performance of a micromachined gyroscope,” Microsyst. Technol. 14, 199–204 (2008).
  7. Y. Su and C. Zhang, “Dynamic 3-D shape measurement method: A review,” Opt. Lasers Eng. 48, 191–204 (2010).
    [CrossRef]
  8. T. Newswander, B. Crowther, G. Gubbels, and R. Senden, “Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications,” Proc. SPIE 8837, 883704 (2013).
    [CrossRef]
  9. K.-S. Park, J. H. Lee, and S.-K. Youn, “Lightweight mirror design method using topology optimization,” Opt. Eng. 44, 053002 (2005).
    [CrossRef]
  10. J. H. Burge, J. R. P. Angel, B. Cuerden, H. M. Martin, S. M. Miller, and D. G. Sandler, “Lightweight mirror technology using a thin facesheet with active rigid support,” Proc. SPIE 3356, 690–701 (1998).
    [CrossRef]
  11. G. Liu, X. Shen, and Q. Zhu, “Optimization design of large octagonal Nd:glass support system,” Proc. SPIE 6289, 62890Z (2006).
    [CrossRef]
  12. R. K. Melugin, L. S. Chang, J. A. Mansfield, and S. D. Howard, “Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope,” Proc. SPIE 973, 184–200 (1988).
    [CrossRef]
  13. H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
    [CrossRef]
  14. M. K. Cho, “Optimization strategy of axial and lateral supports for large primary mirrors,” Proc. SPIE 2199, 841–851 (1994).
    [CrossRef]
  15. A. J. Malvick, “Theoretical elastic deformation of the steward observatory 230-cm and the science center 154-cm mirrors,” Appl. Opt. 11, 575–585 (1972).
    [CrossRef]
  16. A. Li, X. Jiang, J. Sun, L. Wang, Z. Li, and L. Liu, “Laser coarse-fine coupling scanning method by steering double prisms,” Appl. Opt. 51, 356–364 (2012).
    [CrossRef]
  17. http://www.mscsoftware.com/product/adams [accessed 21Dec.2012].
  18. K. B. Doyle, V. L. Genberg, and G. J. Michels, “Integrated Optomechanical Analysis,” in Tutorial Texts in Optical EngineeringA. R. Weeks, ed. (SPIE, 2002), pp. 27–32.
  19. J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), Vol. 11, pp. 27–39.
  20. K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11, 1510–1519 (2003).
    [CrossRef]
  21. H. J. Kaercher, “Experience with wind-excited mirror vibration,” Proc. SPIE 5382, 413–421 (2004).
    [CrossRef]
  22. S. Chen, J. L. Hall, and J. Ye, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).
    [CrossRef]
  23. J. Li and J. Chen, “Random vibration analysis,” in Stochastic Dynamics of Structures (Wiley, 2009), pp. 133–190.

2013 (2)

T. Newswander, B. Crowther, G. Gubbels, and R. Senden, “Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications,” Proc. SPIE 8837, 883704 (2013).
[CrossRef]

L. Liu, “Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations [Invited],” Appl. Opt. 52, 579–599 (2013).
[CrossRef]

2012 (3)

A. Li, X. Jiang, J. Sun, L. Wang, Z. Li, and L. Liu, “Laser coarse-fine coupling scanning method by steering double prisms,” Appl. Opt. 51, 356–364 (2012).
[CrossRef]

G. Moretto, J. R. Kuhn, and P. R. Goode, “Reviewing off-axis telescope concepts. A quest for highest possible dynamic range for photometry and angular resolution,” Proc. SPIE 8444, 8444OY (2012).

A. Li, X. Jiang, J. Sun, Y. Bian, L. Wang, and L. Liu, “Radial support analysis for large-aperture rotating wedge prism,” Opt. Laser Technol. 44, 1881–1888 (2012).
[CrossRef]

2010 (1)

Y. Su and C. Zhang, “Dynamic 3-D shape measurement method: A review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

2009 (1)

W. Cuypers, N. VanGestel, A. Voet, J.-P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng. 47, 292–300 (2009).
[CrossRef]

2008 (1)

J. Liu, L. Wang, T. Jiang, W. Jiao, and J. B. Jang, “Effects of environmental temperature on the performance of a micromachined gyroscope,” Microsyst. Technol. 14, 199–204 (2008).

2006 (2)

G. Liu, X. Shen, and Q. Zhu, “Optimization design of large octagonal Nd:glass support system,” Proc. SPIE 6289, 62890Z (2006).
[CrossRef]

S. Chen, J. L. Hall, and J. Ye, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[CrossRef]

2005 (1)

K.-S. Park, J. H. Lee, and S.-K. Youn, “Lightweight mirror design method using topology optimization,” Opt. Eng. 44, 053002 (2005).
[CrossRef]

2004 (2)

Y. Koyama, E. Morikawa, K. Shiratama, R. Suzuki, and Y. Yasuda, “Optical terminal for NeLS in-orbit demonstration,” Proc. SPIE 5338, 29–36 (2004).
[CrossRef]

H. J. Kaercher, “Experience with wind-excited mirror vibration,” Proc. SPIE 5382, 413–421 (2004).
[CrossRef]

2003 (1)

1998 (2)

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

J. H. Burge, J. R. P. Angel, B. Cuerden, H. M. Martin, S. M. Miller, and D. G. Sandler, “Lightweight mirror technology using a thin facesheet with active rigid support,” Proc. SPIE 3356, 690–701 (1998).
[CrossRef]

1994 (1)

M. K. Cho, “Optimization strategy of axial and lateral supports for large primary mirrors,” Proc. SPIE 2199, 841–851 (1994).
[CrossRef]

1988 (1)

R. K. Melugin, L. S. Chang, J. A. Mansfield, and S. D. Howard, “Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope,” Proc. SPIE 973, 184–200 (1988).
[CrossRef]

1972 (1)

Angel, J. R. P.

J. H. Burge, J. R. P. Angel, B. Cuerden, H. M. Martin, S. M. Miller, and D. G. Sandler, “Lightweight mirror technology using a thin facesheet with active rigid support,” Proc. SPIE 3356, 690–701 (1998).
[CrossRef]

Bian, Y.

A. Li, X. Jiang, J. Sun, Y. Bian, L. Wang, and L. Liu, “Radial support analysis for large-aperture rotating wedge prism,” Opt. Laser Technol. 44, 1881–1888 (2012).
[CrossRef]

Bleys, P.

W. Cuypers, N. VanGestel, A. Voet, J.-P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng. 47, 292–300 (2009).
[CrossRef]

Burge, J. H.

J. H. Burge, J. R. P. Angel, B. Cuerden, H. M. Martin, S. M. Miller, and D. G. Sandler, “Lightweight mirror technology using a thin facesheet with active rigid support,” Proc. SPIE 3356, 690–701 (1998).
[CrossRef]

Callahan, S. P.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Chang, L. S.

R. K. Melugin, L. S. Chang, J. A. Mansfield, and S. D. Howard, “Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope,” Proc. SPIE 973, 184–200 (1988).
[CrossRef]

Chen, J.

J. Li and J. Chen, “Random vibration analysis,” in Stochastic Dynamics of Structures (Wiley, 2009), pp. 133–190.

Chen, S.

S. Chen, J. L. Hall, and J. Ye, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[CrossRef]

Cho, M. K.

M. K. Cho, “Optimization strategy of axial and lateral supports for large primary mirrors,” Proc. SPIE 2199, 841–851 (1994).
[CrossRef]

Creath, K.

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), Vol. 11, pp. 27–39.

Crowther, B.

T. Newswander, B. Crowther, G. Gubbels, and R. Senden, “Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications,” Proc. SPIE 8837, 883704 (2013).
[CrossRef]

Cuerden, B.

J. H. Burge, J. R. P. Angel, B. Cuerden, H. M. Martin, S. M. Miller, and D. G. Sandler, “Lightweight mirror technology using a thin facesheet with active rigid support,” Proc. SPIE 3356, 690–701 (1998).
[CrossRef]

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Cuypers, W.

W. Cuypers, N. VanGestel, A. Voet, J.-P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng. 47, 292–300 (2009).
[CrossRef]

Davison, W. B.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

DeRigne, S. T.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Dettmann, L. R.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Doyle, K. B.

K. B. Doyle, V. L. Genberg, and G. J. Michels, “Integrated Optomechanical Analysis,” in Tutorial Texts in Optical EngineeringA. R. Weeks, ed. (SPIE, 2002), pp. 27–32.

Genberg, V. L.

K. B. Doyle, V. L. Genberg, and G. J. Michels, “Integrated Optomechanical Analysis,” in Tutorial Texts in Optical EngineeringA. R. Weeks, ed. (SPIE, 2002), pp. 27–32.

Goode, P. R.

G. Moretto, J. R. Kuhn, and P. R. Goode, “Reviewing off-axis telescope concepts. A quest for highest possible dynamic range for photometry and angular resolution,” Proc. SPIE 8444, 8444OY (2012).

Gubbels, G.

T. Newswander, B. Crowther, G. Gubbels, and R. Senden, “Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications,” Proc. SPIE 8837, 883704 (2013).
[CrossRef]

Hall, J. L.

S. Chen, J. L. Hall, and J. Ye, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[CrossRef]

Howard, S. D.

R. K. Melugin, L. S. Chang, J. A. Mansfield, and S. D. Howard, “Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope,” Proc. SPIE 973, 184–200 (1988).
[CrossRef]

Jang, J. B.

J. Liu, L. Wang, T. Jiang, W. Jiao, and J. B. Jang, “Effects of environmental temperature on the performance of a micromachined gyroscope,” Microsyst. Technol. 14, 199–204 (2008).

Jiang, T.

J. Liu, L. Wang, T. Jiang, W. Jiao, and J. B. Jang, “Effects of environmental temperature on the performance of a micromachined gyroscope,” Microsyst. Technol. 14, 199–204 (2008).

Jiang, X.

A. Li, X. Jiang, J. Sun, Y. Bian, L. Wang, and L. Liu, “Radial support analysis for large-aperture rotating wedge prism,” Opt. Laser Technol. 44, 1881–1888 (2012).
[CrossRef]

A. Li, X. Jiang, J. Sun, L. Wang, Z. Li, and L. Liu, “Laser coarse-fine coupling scanning method by steering double prisms,” Appl. Opt. 51, 356–364 (2012).
[CrossRef]

Jiao, W.

J. Liu, L. Wang, T. Jiang, W. Jiao, and J. B. Jang, “Effects of environmental temperature on the performance of a micromachined gyroscope,” Microsyst. Technol. 14, 199–204 (2008).

Kaercher, H. J.

H. J. Kaercher, “Experience with wind-excited mirror vibration,” Proc. SPIE 5382, 413–421 (2004).
[CrossRef]

Kaneko, T.

Koyama, Y.

Y. Koyama, E. Morikawa, K. Shiratama, R. Suzuki, and Y. Yasuda, “Optical terminal for NeLS in-orbit demonstration,” Proc. SPIE 5338, 29–36 (2004).
[CrossRef]

Kruth, J.-P.

W. Cuypers, N. VanGestel, A. Voet, J.-P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng. 47, 292–300 (2009).
[CrossRef]

Kuhn, J. R.

G. Moretto, J. R. Kuhn, and P. R. Goode, “Reviewing off-axis telescope concepts. A quest for highest possible dynamic range for photometry and angular resolution,” Proc. SPIE 8444, 8444OY (2012).

Lee, J. H.

K.-S. Park, J. H. Lee, and S.-K. Youn, “Lightweight mirror design method using topology optimization,” Opt. Eng. 44, 053002 (2005).
[CrossRef]

Li, A.

A. Li, X. Jiang, J. Sun, Y. Bian, L. Wang, and L. Liu, “Radial support analysis for large-aperture rotating wedge prism,” Opt. Laser Technol. 44, 1881–1888 (2012).
[CrossRef]

A. Li, X. Jiang, J. Sun, L. Wang, Z. Li, and L. Liu, “Laser coarse-fine coupling scanning method by steering double prisms,” Appl. Opt. 51, 356–364 (2012).
[CrossRef]

Li, J.

J. Li and J. Chen, “Random vibration analysis,” in Stochastic Dynamics of Structures (Wiley, 2009), pp. 133–190.

Li, Z.

Liu, G.

G. Liu, X. Shen, and Q. Zhu, “Optimization design of large octagonal Nd:glass support system,” Proc. SPIE 6289, 62890Z (2006).
[CrossRef]

Liu, J.

J. Liu, L. Wang, T. Jiang, W. Jiao, and J. B. Jang, “Effects of environmental temperature on the performance of a micromachined gyroscope,” Microsyst. Technol. 14, 199–204 (2008).

Liu, L.

Malvick, A. J.

Mansfield, J. A.

R. K. Melugin, L. S. Chang, J. A. Mansfield, and S. D. Howard, “Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope,” Proc. SPIE 973, 184–200 (1988).
[CrossRef]

Martin, H. M.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

J. H. Burge, J. R. P. Angel, B. Cuerden, H. M. Martin, S. M. Miller, and D. G. Sandler, “Lightweight mirror technology using a thin facesheet with active rigid support,” Proc. SPIE 3356, 690–701 (1998).
[CrossRef]

Melugin, R. K.

R. K. Melugin, L. S. Chang, J. A. Mansfield, and S. D. Howard, “Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope,” Proc. SPIE 973, 184–200 (1988).
[CrossRef]

Michels, G. J.

K. B. Doyle, V. L. Genberg, and G. J. Michels, “Integrated Optomechanical Analysis,” in Tutorial Texts in Optical EngineeringA. R. Weeks, ed. (SPIE, 2002), pp. 27–32.

Miller, S. M.

J. H. Burge, J. R. P. Angel, B. Cuerden, H. M. Martin, S. M. Miller, and D. G. Sandler, “Lightweight mirror technology using a thin facesheet with active rigid support,” Proc. SPIE 3356, 690–701 (1998).
[CrossRef]

Mingneau, J.

W. Cuypers, N. VanGestel, A. Voet, J.-P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng. 47, 292–300 (2009).
[CrossRef]

Moretto, G.

G. Moretto, J. R. Kuhn, and P. R. Goode, “Reviewing off-axis telescope concepts. A quest for highest possible dynamic range for photometry and angular resolution,” Proc. SPIE 8444, 8444OY (2012).

Morikawa, E.

Y. Koyama, E. Morikawa, K. Shiratama, R. Suzuki, and Y. Yasuda, “Optical terminal for NeLS in-orbit demonstration,” Proc. SPIE 5338, 29–36 (2004).
[CrossRef]

Newswander, T.

T. Newswander, B. Crowther, G. Gubbels, and R. Senden, “Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications,” Proc. SPIE 8837, 883704 (2013).
[CrossRef]

Oka, K.

Park, K.-S.

K.-S. Park, J. H. Lee, and S.-K. Youn, “Lightweight mirror design method using topology optimization,” Opt. Eng. 44, 053002 (2005).
[CrossRef]

Parodi, G.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Sandler, D. G.

J. H. Burge, J. R. P. Angel, B. Cuerden, H. M. Martin, S. M. Miller, and D. G. Sandler, “Lightweight mirror technology using a thin facesheet with active rigid support,” Proc. SPIE 3356, 690–701 (1998).
[CrossRef]

Senden, R.

T. Newswander, B. Crowther, G. Gubbels, and R. Senden, “Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications,” Proc. SPIE 8837, 883704 (2013).
[CrossRef]

Shen, X.

G. Liu, X. Shen, and Q. Zhu, “Optimization design of large octagonal Nd:glass support system,” Proc. SPIE 6289, 62890Z (2006).
[CrossRef]

Shiratama, K.

Y. Koyama, E. Morikawa, K. Shiratama, R. Suzuki, and Y. Yasuda, “Optical terminal for NeLS in-orbit demonstration,” Proc. SPIE 5338, 29–36 (2004).
[CrossRef]

Su, Y.

Y. Su and C. Zhang, “Dynamic 3-D shape measurement method: A review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

Sun, J.

A. Li, X. Jiang, J. Sun, Y. Bian, L. Wang, and L. Liu, “Radial support analysis for large-aperture rotating wedge prism,” Opt. Laser Technol. 44, 1881–1888 (2012).
[CrossRef]

A. Li, X. Jiang, J. Sun, L. Wang, Z. Li, and L. Liu, “Laser coarse-fine coupling scanning method by steering double prisms,” Appl. Opt. 51, 356–364 (2012).
[CrossRef]

Suzuki, R.

Y. Koyama, E. Morikawa, K. Shiratama, R. Suzuki, and Y. Yasuda, “Optical terminal for NeLS in-orbit demonstration,” Proc. SPIE 5338, 29–36 (2004).
[CrossRef]

Trebisky, T. J.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

VanGestel, N.

W. Cuypers, N. VanGestel, A. Voet, J.-P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng. 47, 292–300 (2009).
[CrossRef]

Voet, A.

W. Cuypers, N. VanGestel, A. Voet, J.-P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng. 47, 292–300 (2009).
[CrossRef]

Wang, L.

A. Li, X. Jiang, J. Sun, Y. Bian, L. Wang, and L. Liu, “Radial support analysis for large-aperture rotating wedge prism,” Opt. Laser Technol. 44, 1881–1888 (2012).
[CrossRef]

A. Li, X. Jiang, J. Sun, L. Wang, Z. Li, and L. Liu, “Laser coarse-fine coupling scanning method by steering double prisms,” Appl. Opt. 51, 356–364 (2012).
[CrossRef]

J. Liu, L. Wang, T. Jiang, W. Jiao, and J. B. Jang, “Effects of environmental temperature on the performance of a micromachined gyroscope,” Microsyst. Technol. 14, 199–204 (2008).

West, S. C.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Williams, J. T.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Wyant, J. C.

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), Vol. 11, pp. 27–39.

Yasuda, Y.

Y. Koyama, E. Morikawa, K. Shiratama, R. Suzuki, and Y. Yasuda, “Optical terminal for NeLS in-orbit demonstration,” Proc. SPIE 5338, 29–36 (2004).
[CrossRef]

Ye, J.

S. Chen, J. L. Hall, and J. Ye, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[CrossRef]

Youn, S.-K.

K.-S. Park, J. H. Lee, and S.-K. Youn, “Lightweight mirror design method using topology optimization,” Opt. Eng. 44, 053002 (2005).
[CrossRef]

Zhang, C.

Y. Su and C. Zhang, “Dynamic 3-D shape measurement method: A review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

Zhu, Q.

G. Liu, X. Shen, and Q. Zhu, “Optimization design of large octagonal Nd:glass support system,” Proc. SPIE 6289, 62890Z (2006).
[CrossRef]

Appl. Opt. (3)

Microsyst. Technol. (1)

J. Liu, L. Wang, T. Jiang, W. Jiao, and J. B. Jang, “Effects of environmental temperature on the performance of a micromachined gyroscope,” Microsyst. Technol. 14, 199–204 (2008).

Opt. Eng. (1)

K.-S. Park, J. H. Lee, and S.-K. Youn, “Lightweight mirror design method using topology optimization,” Opt. Eng. 44, 053002 (2005).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

A. Li, X. Jiang, J. Sun, Y. Bian, L. Wang, and L. Liu, “Radial support analysis for large-aperture rotating wedge prism,” Opt. Laser Technol. 44, 1881–1888 (2012).
[CrossRef]

Opt. Lasers Eng. (2)

Y. Su and C. Zhang, “Dynamic 3-D shape measurement method: A review,” Opt. Lasers Eng. 48, 191–204 (2010).
[CrossRef]

W. Cuypers, N. VanGestel, A. Voet, J.-P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng. 47, 292–300 (2009).
[CrossRef]

Phys. Rev. A (1)

S. Chen, J. L. Hall, and J. Ye, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74, 053801 (2006).
[CrossRef]

Proc. SPIE (9)

G. Moretto, J. R. Kuhn, and P. R. Goode, “Reviewing off-axis telescope concepts. A quest for highest possible dynamic range for photometry and angular resolution,” Proc. SPIE 8444, 8444OY (2012).

Y. Koyama, E. Morikawa, K. Shiratama, R. Suzuki, and Y. Yasuda, “Optical terminal for NeLS in-orbit demonstration,” Proc. SPIE 5338, 29–36 (2004).
[CrossRef]

J. H. Burge, J. R. P. Angel, B. Cuerden, H. M. Martin, S. M. Miller, and D. G. Sandler, “Lightweight mirror technology using a thin facesheet with active rigid support,” Proc. SPIE 3356, 690–701 (1998).
[CrossRef]

G. Liu, X. Shen, and Q. Zhu, “Optimization design of large octagonal Nd:glass support system,” Proc. SPIE 6289, 62890Z (2006).
[CrossRef]

R. K. Melugin, L. S. Chang, J. A. Mansfield, and S. D. Howard, “Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope,” Proc. SPIE 973, 184–200 (1988).
[CrossRef]

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Parodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

M. K. Cho, “Optimization strategy of axial and lateral supports for large primary mirrors,” Proc. SPIE 2199, 841–851 (1994).
[CrossRef]

T. Newswander, B. Crowther, G. Gubbels, and R. Senden, “Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications,” Proc. SPIE 8837, 883704 (2013).
[CrossRef]

H. J. Kaercher, “Experience with wind-excited mirror vibration,” Proc. SPIE 5382, 413–421 (2004).
[CrossRef]

Other (4)

http://www.mscsoftware.com/product/adams [accessed 21Dec.2012].

K. B. Doyle, V. L. Genberg, and G. J. Michels, “Integrated Optomechanical Analysis,” in Tutorial Texts in Optical EngineeringA. R. Weeks, ed. (SPIE, 2002), pp. 27–32.

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), Vol. 11, pp. 27–39.

J. Li and J. Chen, “Random vibration analysis,” in Stochastic Dynamics of Structures (Wiley, 2009), pp. 133–190.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Adjustable radial multisegmental support configuration.

Fig. 2.
Fig. 2.

Rotation model of the prism under three different supports: (a) three-segmental support; (b) four-segmental support; and (c) six-segmental support.

Fig. 3.
Fig. 3.

PV value curves of two-side surface deformation of the rotation prism: (a) plane side and (b) wedge side.

Fig. 4.
Fig. 4.

Dynamic analysis method for the model of a rotating prism asembly.

Fig. 5.
Fig. 5.

Dynamic simulation model of the prism rotating from 0° to 360°.

Fig. 6.
Fig. 6.

Contact force curve at support block A.

Fig. 7.
Fig. 7.

Contact force curve at support block B.

Fig. 8.
Fig. 8.

Contact force curve at support block C.

Fig. 9.
Fig. 9.

Finite element model of prism (32.4° position).

Fig. 10.
Fig. 10.

Surface deformation comparison of the plane side. (a) Finite element analysis result and (b) Zernike polynomial fitting result.

Fig. 11.
Fig. 11.

Surface deformation comparison of the wedge side. (a) Finite element analysis result and (b) Zernike polynomial fitting result.

Fig. 12.
Fig. 12.

First six orders of vibration modes of the rotating prism.

Fig. 13.
Fig. 13.

Amplitude-frequency diagrams. (a) Central node on the plane side. (b) Central node in the wedge side.

Tables (4)

Tables Icon

Table 1. Material Properties

Tables Icon

Table 2. Support Forces (N) along the X and Y Directions at Three Support Blocks for the Prism under the Six Worst Work Conditions

Tables Icon

Table 3. PV Values of Surface Deformation (nm) and Von Mises S Values (MPa)

Tables Icon

Table 4. Surface Deformations under Resonance Conditions

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ddt(Dp˙i)(Dpi)+j=1mεjpiμjZi=0εj=0,
[Z(q˙,q,p,μ,t)Q(q,p)=qp˙S(p,t)]=0,
J[ΔpΔqΔμ]=[ZQS],
J=[ZpZq1hβ0Zq˙Zμ1hβ0EE0Sp00]

Metrics