Abstract

The unstable-waveguide hybrid resonator emits a rectangular, simple astigmatic beam with a large number of high-spatial-frequency oscillations in the unstable direction. To equalize the beam quality, in this paper, a beam shaping system with a spatial filter for the hybrid resonator was investigated by numerical simulation and experimental method. The high-frequency components and fundamental mode of the output beam of the hybrid resonator in the unstable direction are separated by a focus lens. The high-frequency components of the beam are eliminated by the following spatial filter. A nearly Gaussian-shaped beam with approximately equal beam propagation factor M2 in the two orthogonal directions was obtained. The effects of the width of the spatial filter on the beam quality, power loss, and intensity distribution of the shaped beam were investigated. The M2 factor in the unstable direction is changed from 1.6 to 1.1 by optimum design. The power loss is only 9.5%. The simulation results are in good agreement with the experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer Science+Business Media, 2005).
  2. A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, N. Novoselov, N. Orlov, V. E. Semenov, and A. Sokolov, “High-power high-optical-quality rf-excited slab CO2 lasers,” Proc. SPIE 4351, 104–109 (2001).
    [Crossref]
  3. A. Colley, H. Baker, and D. Hall, “Planar waveguide, 1  kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61, 136–138 (1992).
    [Crossref]
  4. P. E. Jackson, H. J. Baker, and D. R. Hall, “CO2 large-area discharge laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
    [Crossref]
  5. A. Lapucci, A. Labate, F. Rossetti, and S. Mascalchi, “Hybrid stable-unstable resonators for diffusion-cooled CO2 slab lasers,” Appl. Opt. 35, 3185–3192 (1996).
    [Crossref]
  6. A. Lapucci and M. Ciofini, “Numerical analysis of non-confocal configurations of a hybrid stable–unstable resonator,” Opt. Commun. 284, 999–1003 (2011).
    [Crossref]
  7. R. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krueger, and H. Weber, “High-power CO2 waveguide laser of the 1-kW category,” Proc. SPIE 1276, 18–28 (1990).
    [Crossref]
  8. K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, and R. Poprawe, “Partially end-pumped Nd:YAG slab laser with a hybrid resonator,” Opt. Lett. 23, 370–372 (1998).
    [Crossref]
  9. M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable–unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
    [Crossref]
  10. A. Lapucci, M. Ciofini, M. Vannoni, and A. Sordini, “High efficiency, diode pumped Nd:YAG ceramics slab laser with 230  W continuous-wave output power,” Appl. Opt. 51, 4224–4231 (2012).
    [Crossref]
  11. S. Zhao, H. T. Huang, J. L. He, B. T. Zhang, M. H. Jiang, and H. L. Zhang, “High beam quality and compact diode end-pumped Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 20, 781–785 (2010).
    [Crossref]
  12. K. Du, D. Li, H. Zhang, P. Shi, X. Wei, and R. Diart, “Electro-optically Q-switched NdYVO 4 slab laser with a high repetition rate and a short pulse width,” Opt. Lett. 28, 87–89 (2003).
    [Crossref]
  13. D. Li, Z. Ma, R. Haas, A. Schell, P. Zhu, P. Shi, and K. Du, “Diode-end-pumped double Nd:YLF slab laser with high energy, short pulse width, and diffraction-limited quality,” Opt. Lett. 33, 1708–1710 (2008).
    [Crossref]
  14. J. Xu, I. J. Thomson, J. D. R. Valera, H. J. Baker, A. B. Russell, and D. R. Hall, “A planar waveguide Nd:YAG laser using active Q-switching of a hybrid unstable resonator,” IEEE J. Sel. Top. Quantum Electron. 13, 638–646 (2007).
    [Crossref]
  15. Y. Yan, H. Zhang, X. Yu, P. Sha, Y. Liu, J. Li, and J. Xin, “A laser-diode-pumped acoustic-optic Q-switched Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 19, 2059–2063 (2009).
    [Crossref]
  16. D. Ehrlichmann, “Mode properties of unstable off-axis resonators with large Fresnel numbers,” Opt. Commun. 119, 236–245 (1995).
    [Crossref]
  17. K. S. Repasky, J. K. Brasseur, J. G. Wessel, and J. L. Carlsten, “Correcting an astigmatic, non-Gaussian beam,” Appl. Opt. 36, 1536–1539 (1997).
    [Crossref]
  18. U. Habich, A. Heursch, H.-D. Plum, and R. Poprawe, “Beam generation and beam shaping for a 1.5-kW diffusion-cooled annular CO2 laser,” Proc. SPIE 3267, 66–73 (1998).
    [Crossref]
  19. D. Friede, H. Hage, T. Northemann, and V. Scholz, “Slab laser with optical imaging system for beam shaping,” WIPO patent1999008347 (18February1999).
  20. G. Li, X. Tang, Y. Qin, and C. Wu, “A modified virtual source method for off-axis unstable resonators with large equivalent Fresnel number,” Optik 123, 1810–1814 (2012).
    [Crossref]
  21. S. Avrillier and J. Verdonck, “Coupling losses in laser resonators containing a hollow rectangular dielectric waveguide,” J. Appl. Phys. 48, 4937–4941 (1977).
    [Crossref]
  22. W. H. Southwell, “Unstable-resonator-mode derivation using virtual-source theory,” J. Opt. Soc. Am. A 3, 1885–1891 (1986).
    [Crossref]
  23. ISO, “Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios—Part 1: stigmatic and simple astigmatic beams” (2005).

2012 (2)

A. Lapucci, M. Ciofini, M. Vannoni, and A. Sordini, “High efficiency, diode pumped Nd:YAG ceramics slab laser with 230  W continuous-wave output power,” Appl. Opt. 51, 4224–4231 (2012).
[Crossref]

G. Li, X. Tang, Y. Qin, and C. Wu, “A modified virtual source method for off-axis unstable resonators with large equivalent Fresnel number,” Optik 123, 1810–1814 (2012).
[Crossref]

2011 (1)

A. Lapucci and M. Ciofini, “Numerical analysis of non-confocal configurations of a hybrid stable–unstable resonator,” Opt. Commun. 284, 999–1003 (2011).
[Crossref]

2010 (1)

S. Zhao, H. T. Huang, J. L. He, B. T. Zhang, M. H. Jiang, and H. L. Zhang, “High beam quality and compact diode end-pumped Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 20, 781–785 (2010).
[Crossref]

2009 (1)

Y. Yan, H. Zhang, X. Yu, P. Sha, Y. Liu, J. Li, and J. Xin, “A laser-diode-pumped acoustic-optic Q-switched Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 19, 2059–2063 (2009).
[Crossref]

2008 (1)

2007 (2)

J. Xu, I. J. Thomson, J. D. R. Valera, H. J. Baker, A. B. Russell, and D. R. Hall, “A planar waveguide Nd:YAG laser using active Q-switching of a hybrid unstable resonator,” IEEE J. Sel. Top. Quantum Electron. 13, 638–646 (2007).
[Crossref]

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable–unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[Crossref]

2003 (1)

2001 (1)

A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, N. Novoselov, N. Orlov, V. E. Semenov, and A. Sokolov, “High-power high-optical-quality rf-excited slab CO2 lasers,” Proc. SPIE 4351, 104–109 (2001).
[Crossref]

1998 (2)

K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, and R. Poprawe, “Partially end-pumped Nd:YAG slab laser with a hybrid resonator,” Opt. Lett. 23, 370–372 (1998).
[Crossref]

U. Habich, A. Heursch, H.-D. Plum, and R. Poprawe, “Beam generation and beam shaping for a 1.5-kW diffusion-cooled annular CO2 laser,” Proc. SPIE 3267, 66–73 (1998).
[Crossref]

1997 (1)

1996 (1)

1995 (1)

D. Ehrlichmann, “Mode properties of unstable off-axis resonators with large Fresnel numbers,” Opt. Commun. 119, 236–245 (1995).
[Crossref]

1992 (1)

A. Colley, H. Baker, and D. Hall, “Planar waveguide, 1  kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61, 136–138 (1992).
[Crossref]

1990 (1)

R. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krueger, and H. Weber, “High-power CO2 waveguide laser of the 1-kW category,” Proc. SPIE 1276, 18–28 (1990).
[Crossref]

1989 (1)

P. E. Jackson, H. J. Baker, and D. R. Hall, “CO2 large-area discharge laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
[Crossref]

1986 (1)

1977 (1)

S. Avrillier and J. Verdonck, “Coupling losses in laser resonators containing a hollow rectangular dielectric waveguide,” J. Appl. Phys. 48, 4937–4941 (1977).
[Crossref]

Avrillier, S.

S. Avrillier and J. Verdonck, “Coupling losses in laser resonators containing a hollow rectangular dielectric waveguide,” J. Appl. Phys. 48, 4937–4941 (1977).
[Crossref]

Baker, H.

A. Colley, H. Baker, and D. Hall, “Planar waveguide, 1  kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61, 136–138 (1992).
[Crossref]

Baker, H. J.

J. Xu, I. J. Thomson, J. D. R. Valera, H. J. Baker, A. B. Russell, and D. R. Hall, “A planar waveguide Nd:YAG laser using active Q-switching of a hybrid unstable resonator,” IEEE J. Sel. Top. Quantum Electron. 13, 638–646 (2007).
[Crossref]

P. E. Jackson, H. J. Baker, and D. R. Hall, “CO2 large-area discharge laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
[Crossref]

Brasseur, J. K.

Carlsten, J. L.

Ciofini, M.

A. Lapucci, M. Ciofini, M. Vannoni, and A. Sordini, “High efficiency, diode pumped Nd:YAG ceramics slab laser with 230  W continuous-wave output power,” Appl. Opt. 51, 4224–4231 (2012).
[Crossref]

A. Lapucci and M. Ciofini, “Numerical analysis of non-confocal configurations of a hybrid stable–unstable resonator,” Opt. Commun. 284, 999–1003 (2011).
[Crossref]

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable–unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[Crossref]

Colley, A.

A. Colley, H. Baker, and D. Hall, “Planar waveguide, 1  kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61, 136–138 (1992).
[Crossref]

Diart, R.

Du, K.

Dutov, A. I.

A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, N. Novoselov, N. Orlov, V. E. Semenov, and A. Sokolov, “High-power high-optical-quality rf-excited slab CO2 lasers,” Proc. SPIE 4351, 104–109 (2001).
[Crossref]

Ehrlichmann, D.

D. Ehrlichmann, “Mode properties of unstable off-axis resonators with large Fresnel numbers,” Opt. Commun. 119, 236–245 (1995).
[Crossref]

Favilla, E.

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable–unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[Crossref]

Friede, D.

D. Friede, H. Hage, T. Northemann, and V. Scholz, “Slab laser with optical imaging system for beam shaping,” WIPO patent1999008347 (18February1999).

Giesekus, J.

Haas, R.

Habich, U.

U. Habich, A. Heursch, H.-D. Plum, and R. Poprawe, “Beam generation and beam shaping for a 1.5-kW diffusion-cooled annular CO2 laser,” Proc. SPIE 3267, 66–73 (1998).
[Crossref]

Hage, H.

D. Friede, H. Hage, T. Northemann, and V. Scholz, “Slab laser with optical imaging system for beam shaping,” WIPO patent1999008347 (18February1999).

Hall, D.

A. Colley, H. Baker, and D. Hall, “Planar waveguide, 1  kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61, 136–138 (1992).
[Crossref]

Hall, D. R.

J. Xu, I. J. Thomson, J. D. R. Valera, H. J. Baker, A. B. Russell, and D. R. Hall, “A planar waveguide Nd:YAG laser using active Q-switching of a hybrid unstable resonator,” IEEE J. Sel. Top. Quantum Electron. 13, 638–646 (2007).
[Crossref]

P. E. Jackson, H. J. Baker, and D. R. Hall, “CO2 large-area discharge laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
[Crossref]

Hall, T.

R. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krueger, and H. Weber, “High-power CO2 waveguide laser of the 1-kW category,” Proc. SPIE 1276, 18–28 (1990).
[Crossref]

He, J. L.

S. Zhao, H. T. Huang, J. L. He, B. T. Zhang, M. H. Jiang, and H. L. Zhang, “High beam quality and compact diode end-pumped Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 20, 781–785 (2010).
[Crossref]

Heursch, A.

U. Habich, A. Heursch, H.-D. Plum, and R. Poprawe, “Beam generation and beam shaping for a 1.5-kW diffusion-cooled annular CO2 laser,” Proc. SPIE 3267, 66–73 (1998).
[Crossref]

Hodgson, N.

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer Science+Business Media, 2005).

Huang, H. T.

S. Zhao, H. T. Huang, J. L. He, B. T. Zhang, M. H. Jiang, and H. L. Zhang, “High beam quality and compact diode end-pumped Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 20, 781–785 (2010).
[Crossref]

Jackson, P. E.

P. E. Jackson, H. J. Baker, and D. R. Hall, “CO2 large-area discharge laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
[Crossref]

Jiang, M. H.

S. Zhao, H. T. Huang, J. L. He, B. T. Zhang, M. H. Jiang, and H. L. Zhang, “High beam quality and compact diode end-pumped Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 20, 781–785 (2010).
[Crossref]

Krueger, H.

R. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krueger, and H. Weber, “High-power CO2 waveguide laser of the 1-kW category,” Proc. SPIE 1276, 18–28 (1990).
[Crossref]

Kuleshov, A. A.

A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, N. Novoselov, N. Orlov, V. E. Semenov, and A. Sokolov, “High-power high-optical-quality rf-excited slab CO2 lasers,” Proc. SPIE 4351, 104–109 (2001).
[Crossref]

Labate, A.

Lapucci, A.

A. Lapucci, M. Ciofini, M. Vannoni, and A. Sordini, “High efficiency, diode pumped Nd:YAG ceramics slab laser with 230  W continuous-wave output power,” Appl. Opt. 51, 4224–4231 (2012).
[Crossref]

A. Lapucci and M. Ciofini, “Numerical analysis of non-confocal configurations of a hybrid stable–unstable resonator,” Opt. Commun. 284, 999–1003 (2011).
[Crossref]

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable–unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[Crossref]

A. Lapucci, A. Labate, F. Rossetti, and S. Mascalchi, “Hybrid stable-unstable resonators for diffusion-cooled CO2 slab lasers,” Appl. Opt. 35, 3185–3192 (1996).
[Crossref]

Li, D.

Li, G.

G. Li, X. Tang, Y. Qin, and C. Wu, “A modified virtual source method for off-axis unstable resonators with large equivalent Fresnel number,” Optik 123, 1810–1814 (2012).
[Crossref]

Li, J.

Y. Yan, H. Zhang, X. Yu, P. Sha, Y. Liu, J. Li, and J. Xin, “A laser-diode-pumped acoustic-optic Q-switched Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 19, 2059–2063 (2009).
[Crossref]

Liu, Y.

Y. Yan, H. Zhang, X. Yu, P. Sha, Y. Liu, J. Li, and J. Xin, “A laser-diode-pumped acoustic-optic Q-switched Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 19, 2059–2063 (2009).
[Crossref]

Loosen, P.

Ma, Z.

Mascalchi, S.

Motovilov, S. A.

A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, N. Novoselov, N. Orlov, V. E. Semenov, and A. Sokolov, “High-power high-optical-quality rf-excited slab CO2 lasers,” Proc. SPIE 4351, 104–109 (2001).
[Crossref]

Northemann, T.

D. Friede, H. Hage, T. Northemann, and V. Scholz, “Slab laser with optical imaging system for beam shaping,” WIPO patent1999008347 (18February1999).

Novoselov, N.

A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, N. Novoselov, N. Orlov, V. E. Semenov, and A. Sokolov, “High-power high-optical-quality rf-excited slab CO2 lasers,” Proc. SPIE 4351, 104–109 (2001).
[Crossref]

Nowack, R. R.

R. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krueger, and H. Weber, “High-power CO2 waveguide laser of the 1-kW category,” Proc. SPIE 1276, 18–28 (1990).
[Crossref]

Opower, H.

R. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krueger, and H. Weber, “High-power CO2 waveguide laser of the 1-kW category,” Proc. SPIE 1276, 18–28 (1990).
[Crossref]

Orlov, N.

A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, N. Novoselov, N. Orlov, V. E. Semenov, and A. Sokolov, “High-power high-optical-quality rf-excited slab CO2 lasers,” Proc. SPIE 4351, 104–109 (2001).
[Crossref]

Plum, H.-D.

U. Habich, A. Heursch, H.-D. Plum, and R. Poprawe, “Beam generation and beam shaping for a 1.5-kW diffusion-cooled annular CO2 laser,” Proc. SPIE 3267, 66–73 (1998).
[Crossref]

Poprawe, R.

U. Habich, A. Heursch, H.-D. Plum, and R. Poprawe, “Beam generation and beam shaping for a 1.5-kW diffusion-cooled annular CO2 laser,” Proc. SPIE 3267, 66–73 (1998).
[Crossref]

K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, and R. Poprawe, “Partially end-pumped Nd:YAG slab laser with a hybrid resonator,” Opt. Lett. 23, 370–372 (1998).
[Crossref]

Qin, Y.

G. Li, X. Tang, Y. Qin, and C. Wu, “A modified virtual source method for off-axis unstable resonators with large equivalent Fresnel number,” Optik 123, 1810–1814 (2012).
[Crossref]

Repasky, K. S.

Rossetti, F.

Russell, A. B.

J. Xu, I. J. Thomson, J. D. R. Valera, H. J. Baker, A. B. Russell, and D. R. Hall, “A planar waveguide Nd:YAG laser using active Q-switching of a hybrid unstable resonator,” IEEE J. Sel. Top. Quantum Electron. 13, 638–646 (2007).
[Crossref]

Sani, E.

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable–unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[Crossref]

Schaefer, U.

R. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krueger, and H. Weber, “High-power CO2 waveguide laser of the 1-kW category,” Proc. SPIE 1276, 18–28 (1990).
[Crossref]

Schell, A.

Scholz, V.

D. Friede, H. Hage, T. Northemann, and V. Scholz, “Slab laser with optical imaging system for beam shaping,” WIPO patent1999008347 (18February1999).

Semenov, V. E.

A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, N. Novoselov, N. Orlov, V. E. Semenov, and A. Sokolov, “High-power high-optical-quality rf-excited slab CO2 lasers,” Proc. SPIE 4351, 104–109 (2001).
[Crossref]

Sha, P.

Y. Yan, H. Zhang, X. Yu, P. Sha, Y. Liu, J. Li, and J. Xin, “A laser-diode-pumped acoustic-optic Q-switched Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 19, 2059–2063 (2009).
[Crossref]

Shi, P.

Sokolov, A.

A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, N. Novoselov, N. Orlov, V. E. Semenov, and A. Sokolov, “High-power high-optical-quality rf-excited slab CO2 lasers,” Proc. SPIE 4351, 104–109 (2001).
[Crossref]

Sordini, A.

Southwell, W. H.

Tang, X.

G. Li, X. Tang, Y. Qin, and C. Wu, “A modified virtual source method for off-axis unstable resonators with large equivalent Fresnel number,” Optik 123, 1810–1814 (2012).
[Crossref]

Thomson, I. J.

J. Xu, I. J. Thomson, J. D. R. Valera, H. J. Baker, A. B. Russell, and D. R. Hall, “A planar waveguide Nd:YAG laser using active Q-switching of a hybrid unstable resonator,” IEEE J. Sel. Top. Quantum Electron. 13, 638–646 (2007).
[Crossref]

Valera, J. D. R.

J. Xu, I. J. Thomson, J. D. R. Valera, H. J. Baker, A. B. Russell, and D. R. Hall, “A planar waveguide Nd:YAG laser using active Q-switching of a hybrid unstable resonator,” IEEE J. Sel. Top. Quantum Electron. 13, 638–646 (2007).
[Crossref]

Vannoni, M.

Verdonck, J.

S. Avrillier and J. Verdonck, “Coupling losses in laser resonators containing a hollow rectangular dielectric waveguide,” J. Appl. Phys. 48, 4937–4941 (1977).
[Crossref]

Weber, H.

R. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krueger, and H. Weber, “High-power CO2 waveguide laser of the 1-kW category,” Proc. SPIE 1276, 18–28 (1990).
[Crossref]

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer Science+Business Media, 2005).

Wei, X.

Wessel, J. G.

Wessel, K.

R. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krueger, and H. Weber, “High-power CO2 waveguide laser of the 1-kW category,” Proc. SPIE 1276, 18–28 (1990).
[Crossref]

Wu, C.

G. Li, X. Tang, Y. Qin, and C. Wu, “A modified virtual source method for off-axis unstable resonators with large equivalent Fresnel number,” Optik 123, 1810–1814 (2012).
[Crossref]

Wu, N.

Xin, J.

Y. Yan, H. Zhang, X. Yu, P. Sha, Y. Liu, J. Li, and J. Xin, “A laser-diode-pumped acoustic-optic Q-switched Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 19, 2059–2063 (2009).
[Crossref]

Xu, J.

J. Xu, I. J. Thomson, J. D. R. Valera, H. J. Baker, A. B. Russell, and D. R. Hall, “A planar waveguide Nd:YAG laser using active Q-switching of a hybrid unstable resonator,” IEEE J. Sel. Top. Quantum Electron. 13, 638–646 (2007).
[Crossref]

K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, and R. Poprawe, “Partially end-pumped Nd:YAG slab laser with a hybrid resonator,” Opt. Lett. 23, 370–372 (1998).
[Crossref]

Yan, Y.

Y. Yan, H. Zhang, X. Yu, P. Sha, Y. Liu, J. Li, and J. Xin, “A laser-diode-pumped acoustic-optic Q-switched Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 19, 2059–2063 (2009).
[Crossref]

Yu, X.

Y. Yan, H. Zhang, X. Yu, P. Sha, Y. Liu, J. Li, and J. Xin, “A laser-diode-pumped acoustic-optic Q-switched Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 19, 2059–2063 (2009).
[Crossref]

Zhang, B. T.

S. Zhao, H. T. Huang, J. L. He, B. T. Zhang, M. H. Jiang, and H. L. Zhang, “High beam quality and compact diode end-pumped Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 20, 781–785 (2010).
[Crossref]

Zhang, H.

Y. Yan, H. Zhang, X. Yu, P. Sha, Y. Liu, J. Li, and J. Xin, “A laser-diode-pumped acoustic-optic Q-switched Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 19, 2059–2063 (2009).
[Crossref]

K. Du, D. Li, H. Zhang, P. Shi, X. Wei, and R. Diart, “Electro-optically Q-switched NdYVO 4 slab laser with a high repetition rate and a short pulse width,” Opt. Lett. 28, 87–89 (2003).
[Crossref]

Zhang, H. L.

S. Zhao, H. T. Huang, J. L. He, B. T. Zhang, M. H. Jiang, and H. L. Zhang, “High beam quality and compact diode end-pumped Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 20, 781–785 (2010).
[Crossref]

Zhao, S.

S. Zhao, H. T. Huang, J. L. He, B. T. Zhang, M. H. Jiang, and H. L. Zhang, “High beam quality and compact diode end-pumped Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 20, 781–785 (2010).
[Crossref]

Zhu, P.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

A. Colley, H. Baker, and D. Hall, “Planar waveguide, 1  kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61, 136–138 (1992).
[Crossref]

P. E. Jackson, H. J. Baker, and D. R. Hall, “CO2 large-area discharge laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Xu, I. J. Thomson, J. D. R. Valera, H. J. Baker, A. B. Russell, and D. R. Hall, “A planar waveguide Nd:YAG laser using active Q-switching of a hybrid unstable resonator,” IEEE J. Sel. Top. Quantum Electron. 13, 638–646 (2007).
[Crossref]

J. Appl. Phys. (1)

S. Avrillier and J. Verdonck, “Coupling losses in laser resonators containing a hollow rectangular dielectric waveguide,” J. Appl. Phys. 48, 4937–4941 (1977).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Phys. (2)

Y. Yan, H. Zhang, X. Yu, P. Sha, Y. Liu, J. Li, and J. Xin, “A laser-diode-pumped acoustic-optic Q-switched Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 19, 2059–2063 (2009).
[Crossref]

S. Zhao, H. T. Huang, J. L. He, B. T. Zhang, M. H. Jiang, and H. L. Zhang, “High beam quality and compact diode end-pumped Nd:YVO4 slab laser with a hybrid resonator,” Laser Phys. 20, 781–785 (2010).
[Crossref]

Opt. Commun. (2)

D. Ehrlichmann, “Mode properties of unstable off-axis resonators with large Fresnel numbers,” Opt. Commun. 119, 236–245 (1995).
[Crossref]

A. Lapucci and M. Ciofini, “Numerical analysis of non-confocal configurations of a hybrid stable–unstable resonator,” Opt. Commun. 284, 999–1003 (2011).
[Crossref]

Opt. Laser Technol. (1)

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable–unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[Crossref]

Opt. Lett. (3)

Optik (1)

G. Li, X. Tang, Y. Qin, and C. Wu, “A modified virtual source method for off-axis unstable resonators with large equivalent Fresnel number,” Optik 123, 1810–1814 (2012).
[Crossref]

Proc. SPIE (3)

U. Habich, A. Heursch, H.-D. Plum, and R. Poprawe, “Beam generation and beam shaping for a 1.5-kW diffusion-cooled annular CO2 laser,” Proc. SPIE 3267, 66–73 (1998).
[Crossref]

R. R. Nowack, H. Opower, U. Schaefer, K. Wessel, T. Hall, H. Krueger, and H. Weber, “High-power CO2 waveguide laser of the 1-kW category,” Proc. SPIE 1276, 18–28 (1990).
[Crossref]

A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, N. Novoselov, N. Orlov, V. E. Semenov, and A. Sokolov, “High-power high-optical-quality rf-excited slab CO2 lasers,” Proc. SPIE 4351, 104–109 (2001).
[Crossref]

Other (3)

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer Science+Business Media, 2005).

D. Friede, H. Hage, T. Northemann, and V. Scholz, “Slab laser with optical imaging system for beam shaping,” WIPO patent1999008347 (18February1999).

ISO, “Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios—Part 1: stigmatic and simple astigmatic beams” (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic diagram of the off-axis unstable-waveguide hybrid resonator.

Fig. 2.
Fig. 2.

Half-widths of the unshaped beam in the unstable direction and in the waveguide direction.

Fig. 3.
Fig. 3.

Intensity distributions of the unshaped beam at z=800mm and at z=2400mm. (a) Overhead view of numerical simulation at z=800mm. (b) Overhead view of numerical simulation at z=2400mm. (c) Experimental result at z=800mm. (d) Experimental result at z=2400mm. (e) Unshaped beam in the unstable direction at z=800mm. (f) Unshaped beam in the unstable direction at z=2400mm. (g) Unshaped beam in the waveguide direction at z=800mm. (h) Unshaped beam in the waveguide direction at z=2400mm.

Fig. 4.
Fig. 4.

Intensity distributions of the output beam of the hybrid resonator in the two directions: (a) unstable direction and (b) waveguide direction.

Fig. 5.
Fig. 5.

Schematic diagram of the double-cylindrical lens beam shaping system.

Fig. 6.
Fig. 6.

Schematic diagram of a beam shaping system with a spatial filter.

Fig. 7.
Fig. 7.

Intensity distribution of the focused beam in the unstable direction before the spatial filter.

Fig. 8.
Fig. 8.

Half-widths of the shaped beam in the unstable direction and in the waveguide direction.

Fig. 9.
Fig. 9.

Intensity distributions of the shaped beam at z=2000mm behind lens M3. (a) Overhead view of numerical simulation. (b) 3D view of numerical simulation. (c) Overhead view of experimental result. (d) 3D view of experimental result.

Fig. 10.
Fig. 10.

Intensity distributions of the shaped beam with different spatial filter width D at z=2000mm behind lens M3. (a) D=0.9mm. (b) D=1.2mm. (c) D=1.4mm. (d) No spatial filter.

Fig. 11.
Fig. 11.

Schematic diagram of the transverse displacement of the misaligned spatial filter.

Fig. 12.
Fig. 12.

Intensity profiles of the shaped beam with different transverse displacements of the misaligned spatial filter at z=2000mm. (a) δ=0.1mm. (b) δ=0.2mm. (c) δ=0.3mm. (d) δ=0.4mm.

Fig. 13.
Fig. 13.

Impacts of the location of the cylindrical lens M2 on the half-width of the shaped beam in the unstable direction (dotted lines) and in the waveguide direction (solid line).

Tables (2)

Tables Icon

Table 1. Power Loss and Beam Propagation Factor M2 with Different Spatial Filter Widths

Tables Icon

Table 2. Power Loss with Different Lateral Displacements

Metrics