Abstract

The C cycle in the Brazilian forests is very important, mainly for issues addressed to climate changes and soil management. Assessing and understanding C dynamics in Amazonian soils can help scientists to improve models and anticipate scenarios. New methods that allow soil C measurements in situ are a crucial approach for this kind of region, due to the costs for collecting and sending soil samples from the rainforest to the laboratory. Laser-induced breakdown spectroscopy (LIBS) is a multielemental atomic emission spectroscopy technique that employs a highly energetic laser pulse for plasma production and requires neither sample preparation nor the use of reagents. As LIBS takes less than 10 s per sample measurement, it is considered a promising technique for in situ soil analyses. One of the limitations of portable LIBS systems, however, is the common overlap of the emission lines that cannot be spectrally resolved. In this study a method was developed capable of separating the Al interference from the C emission line in LIBS measurements. Two typical forest Brazilian soils rich in Al were investigated: a spodosol (Amazon Forest) and an oxisol (Atlantic Forest). Fifty-three samples were collected and analyzed using a low-resolution LIBS apparatus to measure the intensities of C lines. In particular, two C lines were evaluated, at 193.03 and 247.86 nm. The line at 247.86 nm showed very strong interference with Fe and Si lines, which made quantitative analysis difficult. The line at 193.03 nm showed interference with atomic and ionic Al emission lines, but this problem could be solved by applying a correction method that was proposed and tested in this work. The line at 247.86 was used to assess the proposed model. The strong correlation (Pearson’s coefficient R=0.91) found between the LIBS values and those obtained by a reference technique (dry combustion by an elemental analyzer) supported the validity of the proposed method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Reeves, “The role of soil organic matter in maintaining soil quality in continuous cropping systems,” Soil Tillage Res. 43, 131–167 (1997).
    [CrossRef]
  2. C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
    [CrossRef]
  3. Climate Change, The Scientific Basis, Intergovernmental Panel Climate Change, 2001, http://www.grida.no/climate/ipcc_tar/wg1/index.htm .
  4. M. J. Metzeger, M. D. A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schotere, “The vulnerability of ecosystem services to land use change,” Agric. Ecosyst. Environ. 114, 69–85 (2006).
    [CrossRef]
  5. Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
    [CrossRef]
  6. Climate Change, The Physical Science Basis, Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, WMO/UNEP, Paris (2007).
  7. Y. Lucas, A. Chauvel, R. Boulet, G. Ranzani, and F. Scatolini, “Transição latossolos- podzois sobre a formação Barreiras na região de Manaus, Amazônia,” R. Bras. Ci. Solo 8, 325–335 (1984).
  8. C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, and A. J. Melfi, “Deep plant-derived carbon storage in Amazonian podzols,” Biogeosciences 8, 113–120 (2011).
    [CrossRef]
  9. N. H. Batjes and J. A. Dijkshoorn, “Carbon and nitrogen stocks in the soils of the Amazon region,” Geoderma 89, 273–286 (1999).
    [CrossRef]
  10. R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
    [CrossRef]
  11. D. M. B. P. Milori, A. Segnini, W. T. L. Da Silva, A. Posadas, V. Mares, R. Quiroz, and L. Martin-Neto, “Emerging techniques for soil carbon measurements,” in CCAFS Working Paper 2 (2011), pp. 1–26.
  12. R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54 (2007).
    [CrossRef]
  13. D. Santos, L. V. G. Tarelho, F. J. Krug, D. M. B. P. Milori, L. Martin-Neto, and N. D. Vieira, “Espectrometria de emissão ótica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas,” Revista Analytica 24, 72–81 (2006).
  14. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Br. Chem. Soc. 18, 463–512 (2007).
    [CrossRef]
  15. D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
    [CrossRef]
  16. M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
    [CrossRef]
  17. R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta, Part B 63, 1221–1224 (2008).
    [CrossRef]
  18. M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, Part B 64, 899–904 (2009).
    [CrossRef]
  19. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
    [CrossRef]
  20. D. E. Lewis, J. Martinez, C. A. Akpovo, L. Johnson, A. Chauhan, and M. D. Edington, “Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 401, 2225–2236 (2011).
    [CrossRef]
  21. S. C. Jantzi and J. R. Almirall, “Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS),” Anal. Bioanal. Chem. 400, 3341–3351 (2011).
    [CrossRef]
  22. E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. de A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
    [CrossRef]
  23. G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
    [CrossRef]
  24. M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).
  25. D. Diaz, D. W. Hahn, and A. Molinat, “Evaluation of laser-induced breakdown spectroscopy (LIBS) as a measurement technique for evaluation of total elemental concentration in soils,” Appl. Spectrosc. 66, 99–106 (2012).
    [CrossRef]
  26. K. K. Ayyalasomayajula, Y. Y. Fang, J. P. Singh, D. L. McIntyre, and J. Jain, “Application of laser-induced breakdown spectroscopy for total carbon quantification in soil samples,” Appl. Opt. 51, B149–B154 (2012).
    [CrossRef]
  27. X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19, 10997–11006 (2011).
    [CrossRef]
  28. R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
    [CrossRef]

2013

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

2012

2011

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19, 10997–11006 (2011).
[CrossRef]

M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).

C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, and A. J. Melfi, “Deep plant-derived carbon storage in Amazonian podzols,” Biogeosciences 8, 113–120 (2011).
[CrossRef]

D. E. Lewis, J. Martinez, C. A. Akpovo, L. Johnson, A. Chauhan, and M. D. Edington, “Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 401, 2225–2236 (2011).
[CrossRef]

S. C. Jantzi and J. R. Almirall, “Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS),” Anal. Bioanal. Chem. 400, 3341–3351 (2011).
[CrossRef]

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. de A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

2010

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

2009

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, Part B 64, 899–904 (2009).
[CrossRef]

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

2008

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta, Part B 63, 1221–1224 (2008).
[CrossRef]

2007

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Br. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54 (2007).
[CrossRef]

2006

D. Santos, L. V. G. Tarelho, F. J. Krug, D. M. B. P. Milori, L. Martin-Neto, and N. D. Vieira, “Espectrometria de emissão ótica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas,” Revista Analytica 24, 72–81 (2006).

M. J. Metzeger, M. D. A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schotere, “The vulnerability of ecosystem services to land use change,” Agric. Ecosyst. Environ. 114, 69–85 (2006).
[CrossRef]

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

2003

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

2001

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
[CrossRef]

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

1999

N. H. Batjes and J. A. Dijkshoorn, “Carbon and nitrogen stocks in the soils of the Amazon region,” Geoderma 89, 273–286 (1999).
[CrossRef]

1997

D. W. Reeves, “The role of soil organic matter in maintaining soil quality in continuous cropping systems,” Soil Tillage Res. 43, 131–167 (1997).
[CrossRef]

1994

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

1984

Y. Lucas, A. Chauvel, R. Boulet, G. Ranzani, and F. Scatolini, “Transição latossolos- podzois sobre a formação Barreiras na região de Manaus, Amazônia,” R. Bras. Ci. Solo 8, 325–335 (1984).

Achard, R.

C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, and A. J. Melfi, “Deep plant-derived carbon storage in Amazonian podzols,” Biogeosciences 8, 113–120 (2011).
[CrossRef]

Acosta-Michlik, L.

M. J. Metzeger, M. D. A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schotere, “The vulnerability of ecosystem services to land use change,” Agric. Ecosyst. Environ. 114, 69–85 (2006).
[CrossRef]

Akpovo, C. A.

D. E. Lewis, J. Martinez, C. A. Akpovo, L. Johnson, A. Chauhan, and M. D. Edington, “Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 401, 2225–2236 (2011).
[CrossRef]

Almeida, S.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Almirall, J. R.

S. C. Jantzi and J. R. Almirall, “Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS),” Anal. Bioanal. Chem. 400, 3341–3351 (2011).
[CrossRef]

Arroyo, L.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Ayyalasomayajula, K. K.

Baker, T. R.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Barford, C. C.

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Batjes, N. H.

N. H. Batjes and J. A. Dijkshoorn, “Carbon and nitrogen stocks in the soils of the Amazon region,” Geoderma 89, 273–286 (1999).
[CrossRef]

Belkov, M. V.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, Part B 64, 899–904 (2009).
[CrossRef]

Boulet, R.

Y. Lucas, A. Chauvel, R. Boulet, G. Ranzani, and F. Scatolini, “Transição latossolos- podzois sobre a formação Barreiras na região de Manaus, Amazônia,” R. Bras. Ci. Solo 8, 325–335 (1984).

Breshears, D. D.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
[CrossRef]

Brown, J. R.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
[CrossRef]

Burakov, V. S.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, Part B 64, 899–904 (2009).
[CrossRef]

Capitelli, M.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Catlett, K. M.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
[CrossRef]

Chauhan, A.

D. E. Lewis, J. Martinez, C. A. Akpovo, L. Johnson, A. Chauhan, and M. D. Edington, “Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 401, 2225–2236 (2011).
[CrossRef]

Chauvel, A.

Y. Lucas, A. Chauvel, R. Boulet, G. Ranzani, and F. Scatolini, “Transição latossolos- podzois sobre a formação Barreiras na região de Manaus, Amazônia,” R. Bras. Ci. Solo 8, 325–335 (1984).

Chave, J.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Cochrane, T.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

Cortez, J.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Br. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Cremers, D. A.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
[CrossRef]

Da Silva, R. M.

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta, Part B 63, 1221–1224 (2008).
[CrossRef]

Da Silva, W. T. L.

D. M. B. P. Milori, A. Segnini, W. T. L. Da Silva, A. Posadas, V. Mares, R. Quiroz, and L. Martin-Neto, “Emerging techniques for soil carbon measurements,” in CCAFS Working Paper 2 (2011), pp. 1–26.

De Giacomo, A.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, Part B 64, 899–904 (2009).
[CrossRef]

De Pascale, O.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

DeGiacomo, A.

M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Dell’Aglio, M.

M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

DePascale, O.

M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).

Diaz, D.

Dijkshoorn, J. A.

N. H. Batjes and J. A. Dijkshoorn, “Carbon and nitrogen stocks in the soils of the Amazon region,” Geoderma 89, 273–286 (1999).
[CrossRef]

Dos Santos, L. M.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. de A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

Ebinger, M. H.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
[CrossRef]

Edington, M. D.

D. E. Lewis, J. Martinez, C. A. Akpovo, L. Johnson, A. Chauhan, and M. D. Edington, “Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 401, 2225–2236 (2011).
[CrossRef]

Etchevers, J. D.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

Fang, Y. Y.

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

Ferreira, E. C.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. de A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta, Part B 63, 1221–1224 (2008).
[CrossRef]

Ferreira, E. J.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. de A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta, Part B 63, 1221–1224 (2008).
[CrossRef]

Ferris, M. J.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
[CrossRef]

Fitzjarrald, D.

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Francis, B.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

Gaudiuso, R.

M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Gehl, R. J.

R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54 (2007).
[CrossRef]

Goddard, K. L.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

Gonzaga, F. B.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Br. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Goulden, M. L.

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Govaerts, B.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

Grimaldi, M.

C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, and A. J. Melfi, “Deep plant-derived carbon storage in Amazonian podzols,” Biogeosciences 8, 113–120 (2011).
[CrossRef]

Guo, L. B.

Hahn, D. W.

Harris, R.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

He, X. N.

Higuchi, N.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Hu, W.

Hutyra, L.

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Izaurralde, R. C.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

Jain, J.

Jantzi, S. C.

S. C. Jantzi and J. R. Almirall, “Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS),” Anal. Bioanal. Chem. 400, 3341–3351 (2011).
[CrossRef]

Johnson, L.

D. E. Lewis, J. Martinez, C. A. Akpovo, L. Johnson, A. Chauhan, and M. D. Edington, “Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 401, 2225–2236 (2011).
[CrossRef]

Kammerdiener, S. A.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
[CrossRef]

Killeen, T. J.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Kiris, V. V.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, Part B 64, 899–904 (2009).
[CrossRef]

Kompa, K. L.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Krug, F. J.

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta, Part B 63, 1221–1224 (2008).
[CrossRef]

D. Santos, L. V. G. Tarelho, F. J. Krug, D. M. B. P. Milori, L. Martin-Neto, and N. D. Vieira, “Espectrometria de emissão ótica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas,” Revista Analytica 24, 72–81 (2006).

Lamb, M. S.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

Laurance, S. G.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Laurance, W. F.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Leemans, R.

M. J. Metzeger, M. D. A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schotere, “The vulnerability of ecosystem services to land use change,” Agric. Ecosyst. Environ. 114, 69–85 (2006).
[CrossRef]

Lewis, D. E.

D. E. Lewis, J. Martinez, C. A. Akpovo, L. Johnson, A. Chauhan, and M. D. Edington, “Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 401, 2225–2236 (2011).
[CrossRef]

Lewis, S. L.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Lezama, A. T.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Li, C. M.

Lu, Y. F.

Lucas, Y.

C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, and A. J. Melfi, “Deep plant-derived carbon storage in Amazonian podzols,” Biogeosciences 8, 113–120 (2011).
[CrossRef]

Y. Lucas, A. Chauvel, R. Boulet, G. Ranzani, and F. Scatolini, “Transição latossolos- podzois sobre a formação Barreiras na região de Manaus, Amazônia,” R. Bras. Ci. Solo 8, 325–335 (1984).

Malhi, Y.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Mares, V.

D. M. B. P. Milori, A. Segnini, W. T. L. Da Silva, A. Posadas, V. Mares, R. Quiroz, and L. Martin-Neto, “Emerging techniques for soil carbon measurements,” in CCAFS Working Paper 2 (2011), pp. 1–26.

Martinez, J.

D. E. Lewis, J. Martinez, C. A. Akpovo, L. Johnson, A. Chauhan, and M. D. Edington, “Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 401, 2225–2236 (2011).
[CrossRef]

Martínez, R. V.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Martin-Neto, L.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. de A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta, Part B 63, 1221–1224 (2008).
[CrossRef]

D. Santos, L. V. G. Tarelho, F. J. Krug, D. M. B. P. Milori, L. Martin-Neto, and N. D. Vieira, “Espectrometria de emissão ótica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas,” Revista Analytica 24, 72–81 (2006).

D. M. B. P. Milori, A. Segnini, W. T. L. Da Silva, A. Posadas, V. Mares, R. Quiroz, and L. Martin-Neto, “Emerging techniques for soil carbon measurements,” in CCAFS Working Paper 2 (2011), pp. 1–26.

McCarty, G. W.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

McIntyre, D. L.

Meir, P.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Melfi, A. J.

C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, and A. J. Melfi, “Deep plant-derived carbon storage in Amazonian podzols,” Biogeosciences 8, 113–120 (2011).
[CrossRef]

Metzeger, M. J.

M. J. Metzeger, M. D. A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schotere, “The vulnerability of ecosystem services to land use change,” Agric. Ecosyst. Environ. 114, 69–85 (2006).
[CrossRef]

Meyer, C. W.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

Miano, T. M.

M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Milori, D. M. B. P.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. de A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta, Part B 63, 1221–1224 (2008).
[CrossRef]

D. Santos, L. V. G. Tarelho, F. J. Krug, D. M. B. P. Milori, L. Martin-Neto, and N. D. Vieira, “Espectrometria de emissão ótica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas,” Revista Analytica 24, 72–81 (2006).

D. M. B. P. Milori, A. Segnini, W. T. L. Da Silva, A. Posadas, V. Mares, R. Quiroz, and L. Martin-Neto, “Emerging techniques for soil carbon measurements,” in CCAFS Working Paper 2 (2011), pp. 1–26.

Mitra, S.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

Molinat, A.

Monteagudo, A.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Montes, C. R.

C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, and A. J. Melfi, “Deep plant-derived carbon storage in Amazonian podzols,” Biogeosciences 8, 113–120 (2011).
[CrossRef]

Moore, K.

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Munger, J. W.

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Neill, D. A.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Niessner, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Nogueira, A. R. de A.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. de A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

Norfleet, M. L.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

Pasquini, C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Br. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Pereira, O. J. R.

C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, and A. J. Melfi, “Deep plant-derived carbon storage in Amazonian podzols,” Biogeosciences 8, 113–120 (2011).
[CrossRef]

Philips, O. L.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Pitman, N. C. A.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

Posadas, A.

D. M. B. P. Milori, A. Segnini, W. T. L. Da Silva, A. Posadas, V. Mares, R. Quiroz, and L. Martin-Neto, “Emerging techniques for soil carbon measurements,” in CCAFS Working Paper 2 (2011), pp. 1–26.

Pyle, E. H.

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Quesada, C. A.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Quiroz, R.

D. M. B. P. Milori, A. Segnini, W. T. L. Da Silva, A. Posadas, V. Mares, R. Quiroz, and L. Martin-Neto, “Emerging techniques for soil carbon measurements,” in CCAFS Working Paper 2 (2011), pp. 1–26.

Raikov, S. N.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, Part B 64, 899–904 (2009).
[CrossRef]

Ranzani, G.

Y. Lucas, A. Chauvel, R. Boulet, G. Ranzani, and F. Scatolini, “Transição latossolos- podzois sobre a formação Barreiras na região de Manaus, Amazônia,” R. Bras. Ci. Solo 8, 325–335 (1984).

Rappaport, A. G.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

Reeves, D. W.

D. W. Reeves, “The role of soil organic matter in maintaining soil quality in continuous cropping systems,” Soil Tillage Res. 43, 131–167 (1997).
[CrossRef]

Reeves, J. B.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

Rice, C. W.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54 (2007).
[CrossRef]

Rounsevell, M. D. A.

M. J. Metzeger, M. D. A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schotere, “The vulnerability of ecosystem services to land use change,” Agric. Ecosyst. Environ. 114, 69–85 (2006).
[CrossRef]

Saleska, S. R.

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Salomão, R.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Santos, D.

D. Santos, L. V. G. Tarelho, F. J. Krug, D. M. B. P. Milori, L. Martin-Neto, and N. D. Vieira, “Espectrometria de emissão ótica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas,” Revista Analytica 24, 72–81 (2006).

Sayre, K. D.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

Scatolini, F.

Y. Lucas, A. Chauvel, R. Boulet, G. Ranzani, and F. Scatolini, “Transição latossolos- podzois sobre a formação Barreiras na região de Manaus, Amazônia,” R. Bras. Ci. Solo 8, 325–335 (1984).

Schechter, I.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Schotere, D.

M. J. Metzeger, M. D. A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schotere, “The vulnerability of ecosystem services to land use change,” Agric. Ecosyst. Environ. 114, 69–85 (2006).
[CrossRef]

Schroeder, H.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Segnini, A.

D. M. B. P. Milori, A. Segnini, W. T. L. Da Silva, A. Posadas, V. Mares, R. Quiroz, and L. Martin-Neto, “Emerging techniques for soil carbon measurements,” in CCAFS Working Paper 2 (2011), pp. 1–26.

Senesi, G. S.

M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Silva, J. N. M.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Silva, L. M. C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Br. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Singh, J. P.

Tarasenko, N. V.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, Part B 64, 899–904 (2009).
[CrossRef]

Tarelho, L. V. G.

D. Santos, L. V. G. Tarelho, F. J. Krug, D. M. B. P. Milori, L. Martin-Neto, and N. D. Vieira, “Espectrometria de emissão ótica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas,” Revista Analytica 24, 72–81 (2006).

Terborgh, J.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Thomson, A. M.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

Unkefer, P. J.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
[CrossRef]

Urbanski, S. P.

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Vargas, P. N.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Vieira, N. D.

D. Santos, L. V. G. Tarelho, F. J. Krug, D. M. B. P. Milori, L. Martin-Neto, and N. D. Vieira, “Espectrometria de emissão ótica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas,” Revista Analytica 24, 72–81 (2006).

Vinceti, B.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Wielopolski, L.

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

Wisbrun, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Wofsy, S. C.

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Wood, D.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Wright, J.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

Zaccone, C.

M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Agric. Ecosyst. Environ.

M. J. Metzeger, M. D. A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schotere, “The vulnerability of ecosystem services to land use change,” Agric. Ecosyst. Environ. 114, 69–85 (2006).
[CrossRef]

Anal. Bioanal. Chem.

D. E. Lewis, J. Martinez, C. A. Akpovo, L. Johnson, A. Chauhan, and M. D. Edington, “Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 401, 2225–2236 (2011).
[CrossRef]

S. C. Jantzi and J. R. Almirall, “Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS),” Anal. Bioanal. Chem. 400, 3341–3351 (2011).
[CrossRef]

Anal. Chem.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Biogeosciences

C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, and A. J. Melfi, “Deep plant-derived carbon storage in Amazonian podzols,” Biogeosciences 8, 113–120 (2011).
[CrossRef]

Clim. Change

R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54 (2007).
[CrossRef]

Environ. Res.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Geoderma

N. H. Batjes and J. A. Dijkshoorn, “Carbon and nitrogen stocks in the soils of the Amazon region,” Geoderma 89, 273–286 (1999).
[CrossRef]

Glob. Chang. Biol.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006).
[CrossRef]

J. Anal. At. Spectrom.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010).
[CrossRef]

J. Br. Chem. Soc.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Br. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

J. Environ. Monit.

M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).

J. Environ. Quality

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001).
[CrossRef]

Opt. Express

PLoS ONE

R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013).
[CrossRef]

R. Bras. Ci. Solo

Y. Lucas, A. Chauvel, R. Boulet, G. Ranzani, and F. Scatolini, “Transição latossolos- podzois sobre a formação Barreiras na região de Manaus, Amazônia,” R. Bras. Ci. Solo 8, 325–335 (1984).

Revista Analytica

D. Santos, L. V. G. Tarelho, F. J. Krug, D. M. B. P. Milori, L. Martin-Neto, and N. D. Vieira, “Espectrometria de emissão ótica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas,” Revista Analytica 24, 72–81 (2006).

Science

C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001).
[CrossRef]

Soil Sci. Soc. Am. J.

M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003).
[CrossRef]

Soil Tillage Res.

D. W. Reeves, “The role of soil organic matter in maintaining soil quality in continuous cropping systems,” Soil Tillage Res. 43, 131–167 (1997).
[CrossRef]

Spectrochim. Acta, Part B

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta, Part B 63, 1221–1224 (2008).
[CrossRef]

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, Part B 64, 899–904 (2009).
[CrossRef]

Talanta

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. de A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

Other

Climate Change, The Scientific Basis, Intergovernmental Panel Climate Change, 2001, http://www.grida.no/climate/ipcc_tar/wg1/index.htm .

Climate Change, The Physical Science Basis, Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, WMO/UNEP, Paris (2007).

D. M. B. P. Milori, A. Segnini, W. T. L. Da Silva, A. Posadas, V. Mares, R. Quiroz, and L. Martin-Neto, “Emerging techniques for soil carbon measurements,” in CCAFS Working Paper 2 (2011), pp. 1–26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

LIBS spectra of (a) spodosol and (b) oxisol samples.

Fig. 2.
Fig. 2.

LIBS spectra of the Oxi1 layer (solid line) of the oxisol sample, an Al alloy blade sample (gray line), and a graphite sample (dashed line). The C line at 193.03 nm and the Al lines at 193.04 and 193.58 nm are indicated.

Fig. 3.
Fig. 3.

Linear correlation between the intensity of the ionic Al line at 394.4 nm and the intensity of the atomic Al line at 199.0 nm. The Pearson’s coefficient was 0.97.

Fig. 4.
Fig. 4.

LIBS intensities of the C line at 193.03 nm (a) without and (b) with the correction of interference of Al lines as a function of the C line at 247.86 nm. The Pearson’s correlation coefficients were (a) 0.86 and (b) 0.96.

Fig. 5.
Fig. 5.

LIBS intensities of the C line at 193.03 nm without the interference of Al lines as a function of the C concentration determined by elemental analysis for spodosol samples. The Pearson’s correlation coefficient was 0.97.

Fig. 6.
Fig. 6.

LIBS intensities of the C line at 193.03 nm without the interference of Al lines as a function of the C concentration determined by elemental analysis for (a) oxisol samples and (b) validation data. The Pearson’s correlation coefficient was (a) 0.91 for the calibration curve and (b) 0.91 for the validation. The LOD found was 0.28%.

Tables (1)

Tables Icon

Table 1. Characteristics of the Soil Samples Examined

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A C + Al α 1 A Al = A C 247 ,
A C + Al α 2 A Al = ln Ω ,

Metrics