Abstract

We present a biocompatible, all-glass, 0.2 mm diameter, fiber-optic probe that combines an extrinsic Fabry–Perot interferometry and a proximal fiber Bragg grating sensor; the probe enables dual pressure and temperature measurement on an active 4 mm length, with 40 Pa and 0.2°C nominal accuracy. The sensing system has been applied to monitor online the radiofrequency thermal ablation of tumors in liver tissue. Preliminary experiments have been performed in a reference chamber with uniform heating; further experiments have been carried out on ex vivo porcine liver, which allowed the measurement of a steep temperature gradient and monitoring of the local pressure increase during the ablation procedure.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Wood, J. R. Ramkaransingh, M. S. Tito Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer 94, 443–451 (2002).
    [CrossRef]
  2. L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
    [CrossRef]
  3. A. Orlando, G. Leandro, M. Olivo, A. Andriulli, and M. Cottone, “Radiofrequency thermal ablation vs percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials,” Am. J. Gastroenterol. 104, 514–524 (2009).
  4. S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgen. 174, 323–331 (2000).
    [CrossRef]
  5. P. L. Pereira, “Actual role of radiofreqency ablation of liver metastases,” European Radiol. 7, 291–299 (2007).
  6. M. J. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgen. 176, 3–16 (2001).
    [CrossRef]
  7. S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100, 619–634 (2009).
    [CrossRef]
  8. S. Curley, “Radiofrequency ablation of malignant liver tumors,” Ann. Surg. Oncol. 1, 338–347 (2003).
  9. M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
    [CrossRef]
  10. T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002).
    [CrossRef]
  11. F. Ahmad, G. Gravante, N. Bhardwai, A. Strickland, R. Basit, and R. Sorge, “Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy,” J. Gastrointest. Surg. 14, 1963–1968 (2010).
  12. C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
    [CrossRef]
  13. M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258, 351–369 (2011).
    [CrossRef]
  14. M. Trujillo, J. Alba, and E. Berjano, “Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,” Int. J. Hyperthermia 28, 62–68 (2012).
    [CrossRef]
  15. K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).
  16. K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
    [CrossRef]
  17. M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
    [CrossRef]
  18. E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley Interscience, 1991).
  19. Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
    [CrossRef]
  20. P. Roriz, O. Frazao, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simoes, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 050903 (2013).
    [CrossRef]
  21. K. K. Chin, Y. Sun, G. Feng, G. E. Georgiou, K. Guo, E. Niver, H. Roman, and K. Noe, “Fabry–Perot diaphragm fiber-optic sensor,” Appl. Opt. 46, 7614–7619 (2007).
    [CrossRef]
  22. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37, 133–135 (2012).
    [CrossRef]
  23. L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sens. Actuators A 163, 42–47 (2010).
    [CrossRef]
  24. P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-compatible fiber-optic force sensors for catheterization procedures,” IEEE Sens. J. 10, 1598–1608 (2010).
    [CrossRef]
  25. M. Zhou, C. Yang, Z. Liu, J. P. Cysyk, and S. Zheng, “An implantable Fabry–Perot pressure sensor fabricated on left ventricular assist device for heart failure,” Biomed. Microdevices 14, 235–245 (2012).
    [CrossRef]
  26. K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
    [CrossRef]
  27. K. Bremer, E. Lewis, G. Leen, B. S. Lochmann, and I. A. R. Mueller, “Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors,” IEEE Sens. J. 12, 133–138 (2012).
    [CrossRef]
  28. H. Bae and M. Yu, “Miniature Fabry–Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20, 14573–14583 (2012).
    [CrossRef]
  29. Opsens OPP-M, http://www.opsens.com/en/industries/products/pressure/opp-m/ .
  30. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
    [CrossRef]
  31. A. Othonos and K. Kalli, “Properties of fiber Bragg gratings,” in Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), pp. 95–147.
  32. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [CrossRef]
  33. S. Poeggel, D. Tosi, G. Leen, and E. Lewis, “Diaphragm etching in extrinsic Fabry–Perot interferometric fiber-optic pressure sensors,” in Conference on Lasers and Electro-Optics (CLEO) Europe, Munich, Germany (2013).
  34. Y. Jiang and W. Ding, “Recent developments in fiber optic spectral white-light interferometry,” Photonic Sens. 1, 62–71 (2011).
    [CrossRef]
  35. D. Tosi, M. Olivero, G. Perrone, and A. Vallan, “Weigh-in-motion through fibre Bragg grating optical sensors,” Electron. Lett. 46, 1223–1225 (2010).
    [CrossRef]

2013 (1)

P. Roriz, O. Frazao, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simoes, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 050903 (2013).
[CrossRef]

2012 (5)

F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37, 133–135 (2012).
[CrossRef]

K. Bremer, E. Lewis, G. Leen, B. S. Lochmann, and I. A. R. Mueller, “Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors,” IEEE Sens. J. 12, 133–138 (2012).
[CrossRef]

H. Bae and M. Yu, “Miniature Fabry–Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20, 14573–14583 (2012).
[CrossRef]

M. Zhou, C. Yang, Z. Liu, J. P. Cysyk, and S. Zheng, “An implantable Fabry–Perot pressure sensor fabricated on left ventricular assist device for heart failure,” Biomed. Microdevices 14, 235–245 (2012).
[CrossRef]

M. Trujillo, J. Alba, and E. Berjano, “Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,” Int. J. Hyperthermia 28, 62–68 (2012).
[CrossRef]

2011 (2)

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258, 351–369 (2011).
[CrossRef]

Y. Jiang and W. Ding, “Recent developments in fiber optic spectral white-light interferometry,” Photonic Sens. 1, 62–71 (2011).
[CrossRef]

2010 (4)

D. Tosi, M. Olivero, G. Perrone, and A. Vallan, “Weigh-in-motion through fibre Bragg grating optical sensors,” Electron. Lett. 46, 1223–1225 (2010).
[CrossRef]

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sens. Actuators A 163, 42–47 (2010).
[CrossRef]

P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-compatible fiber-optic force sensors for catheterization procedures,” IEEE Sens. J. 10, 1598–1608 (2010).
[CrossRef]

F. Ahmad, G. Gravante, N. Bhardwai, A. Strickland, R. Basit, and R. Sorge, “Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy,” J. Gastrointest. Surg. 14, 1963–1968 (2010).

2009 (3)

A. Orlando, G. Leandro, M. Olivo, A. Andriulli, and M. Cottone, “Radiofrequency thermal ablation vs percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials,” Am. J. Gastroenterol. 104, 514–524 (2009).

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100, 619–634 (2009).
[CrossRef]

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

2007 (2)

K. K. Chin, Y. Sun, G. Feng, G. E. Georgiou, K. Guo, E. Niver, H. Roman, and K. Noe, “Fabry–Perot diaphragm fiber-optic sensor,” Appl. Opt. 46, 7614–7619 (2007).
[CrossRef]

P. L. Pereira, “Actual role of radiofreqency ablation of liver metastases,” European Radiol. 7, 291–299 (2007).

2006 (2)

M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
[CrossRef]

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
[CrossRef]

2005 (2)

K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

2003 (1)

S. Curley, “Radiofrequency ablation of malignant liver tumors,” Ann. Surg. Oncol. 1, 338–347 (2003).

2002 (2)

B. J. Wood, J. R. Ramkaransingh, M. S. Tito Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer 94, 443–451 (2002).
[CrossRef]

T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002).
[CrossRef]

2001 (3)

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

M. J. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgen. 176, 3–16 (2001).
[CrossRef]

2000 (1)

S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgen. 174, 323–331 (2000).
[CrossRef]

1997 (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

1996 (1)

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Abe, Y.

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

Ahmad, F.

F. Ahmad, G. Gravante, N. Bhardwai, A. Strickland, R. Basit, and R. Sorge, “Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy,” J. Gastrointest. Surg. 14, 1963–1968 (2010).

Ahmed, M.

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258, 351–369 (2011).
[CrossRef]

Alba, J.

M. Trujillo, J. Alba, and E. Berjano, “Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,” Int. J. Hyperthermia 28, 62–68 (2012).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Althoefer, K.

P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-compatible fiber-optic force sensors for catheterization procedures,” IEEE Sens. J. 10, 1598–1608 (2010).
[CrossRef]

Ametani, F.

T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002).
[CrossRef]

Andriulli, A.

A. Orlando, G. Leandro, M. Olivo, A. Andriulli, and M. Cottone, “Radiofrequency thermal ablation vs percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials,” Am. J. Gastroenterol. 104, 514–524 (2009).

Anelli, V.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Arimura, E.

K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

Bae, H.

Basit, R.

F. Ahmad, G. Gravante, N. Bhardwai, A. Strickland, R. Basit, and R. Sorge, “Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy,” J. Gastrointest. Surg. 14, 1963–1968 (2010).

Berjano, E.

M. Trujillo, J. Alba, and E. Berjano, “Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,” Int. J. Hyperthermia 28, 62–68 (2012).
[CrossRef]

Bhardwai, N.

F. Ahmad, G. Gravante, N. Bhardwai, A. Strickland, R. Basit, and R. Sorge, “Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy,” J. Gastrointest. Surg. 14, 1963–1968 (2010).

Bianchini, A.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Bizzarri, G.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Brace, C. L.

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258, 351–369 (2011).
[CrossRef]

Bremer, K.

K. Bremer, E. Lewis, G. Leen, B. S. Lochmann, and I. A. R. Mueller, “Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors,” IEEE Sens. J. 12, 133–138 (2012).
[CrossRef]

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

Caspani, B.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Cecconi, P.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Chan, C. C.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sens. Actuators A 163, 42–47 (2010).
[CrossRef]

Chen, L. H.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sens. Actuators A 163, 42–47 (2010).
[CrossRef]

Chin, K. K.

Cottone, M.

A. Orlando, G. Leandro, M. Olivo, A. Andriulli, and M. Cottone, “Radiofrequency thermal ablation vs percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials,” Am. J. Gastroenterol. 104, 514–524 (2009).

Cova, L.

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

Curley, S.

S. Curley, “Radiofrequency ablation of malignant liver tumors,” Ann. Surg. Oncol. 1, 338–347 (2003).

Cysyk, J. P.

M. Zhou, C. Yang, Z. Liu, J. P. Cysyk, and S. Zheng, “An implantable Fabry–Perot pressure sensor fabricated on left ventricular assist device for heart failure,” Biomed. Microdevices 14, 235–245 (2012).
[CrossRef]

Dellanoce, M.

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

Ding, W.

Y. Jiang and W. Ding, “Recent developments in fiber optic spectral white-light interferometry,” Photonic Sens. 1, 62–71 (2011).
[CrossRef]

Dodd, M. J.

M. J. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgen. 176, 3–16 (2001).
[CrossRef]

Enjoji, M.

M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
[CrossRef]

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).

Feng, G.

Frazao, O.

P. Roriz, O. Frazao, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simoes, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 050903 (2013).
[CrossRef]

Fukushima, M.

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

Gazelle, G. S.

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgen. 174, 323–331 (2000).
[CrossRef]

Georgiou, G. E.

Goh, S. K.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sens. Actuators A 163, 42–47 (2010).
[CrossRef]

Goldberg, S. N.

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258, 351–369 (2011).
[CrossRef]

S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgen. 174, 323–331 (2000).
[CrossRef]

Gravante, G.

F. Ahmad, G. Gravante, N. Bhardwai, A. Strickland, R. Basit, and R. Sorge, “Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy,” J. Gastrointest. Surg. 14, 1963–1968 (2010).

Guo, K.

Halpern, E. F.

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Iannitti, D. A.

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100, 619–634 (2009).
[CrossRef]

Ierace, T.

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

Iimuro, Y.

T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002).
[CrossRef]

Iseki, S.

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

Itoh, K.

T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002).
[CrossRef]

Jiang, Y.

Y. Jiang and W. Ding, “Recent developments in fiber optic spectral white-light interferometry,” Photonic Sens. 1, 62–71 (2011).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, “Properties of fiber Bragg gratings,” in Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), pp. 95–147.

Kimura, S.

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

Kohjima, M.

M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
[CrossRef]

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).

Konishi, J.

T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002).
[CrossRef]

Kotoh, K.

M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
[CrossRef]

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).

Leandro, G.

A. Orlando, G. Leandro, M. Olivo, A. Andriulli, and M. Cottone, “Radiofrequency thermal ablation vs percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials,” Am. J. Gastroenterol. 104, 514–524 (2009).

Lee, F. T.

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258, 351–369 (2011).
[CrossRef]

Leen, G.

K. Bremer, E. Lewis, G. Leen, B. S. Lochmann, and I. A. R. Mueller, “Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors,” IEEE Sens. J. 12, 133–138 (2012).
[CrossRef]

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

S. Poeggel, D. Tosi, G. Leen, and E. Lewis, “Diaphragm etching in extrinsic Fabry–Perot interferometric fiber-optic pressure sensors,” in Conference on Lasers and Electro-Optics (CLEO) Europe, Munich, Germany (2013).

Lewis, E.

K. Bremer, E. Lewis, G. Leen, B. S. Lochmann, and I. A. R. Mueller, “Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors,” IEEE Sens. J. 12, 133–138 (2012).
[CrossRef]

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

S. Poeggel, D. Tosi, G. Leen, and E. Lewis, “Diaphragm etching in extrinsic Fabry–Perot interferometric fiber-optic pressure sensors,” in Conference on Lasers and Electro-Optics (CLEO) Europe, Munich, Germany (2013).

Li, C.

Libutti, S. K.

B. J. Wood, J. R. Ramkaransingh, M. S. Tito Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer 94, 443–451 (2002).
[CrossRef]

Liu, Z.

M. Zhou, C. Yang, Z. Liu, J. P. Cysyk, and S. Zheng, “An implantable Fabry–Perot pressure sensor fabricated on left ventricular assist device for heart failure,” Biomed. Microdevices 14, 235–245 (2012).
[CrossRef]

Livraghi, T.

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

Lobo-Ribeiro, A. B.

P. Roriz, O. Frazao, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simoes, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 050903 (2013).
[CrossRef]

Lochmann, B. S.

K. Bremer, E. Lewis, G. Leen, B. S. Lochmann, and I. A. R. Mueller, “Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors,” IEEE Sens. J. 12, 133–138 (2012).
[CrossRef]

Lochmann, S.

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

Lu, L.

Lu, W.

Maetani, Y.

T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002).
[CrossRef]

Magnolfi, F.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Manenti, G.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Martinie, J. B.

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100, 619–634 (2009).
[CrossRef]

Meloni, F.

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

Miyagi, Y.

M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
[CrossRef]

Morizono, S.

M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
[CrossRef]

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).

Moss, B.

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

Mueller, I.

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

Mueller, I. A. R.

K. Bremer, E. Lewis, G. Leen, B. S. Lochmann, and I. A. R. Mueller, “Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors,” IEEE Sens. J. 12, 133–138 (2012).
[CrossRef]

Mueller, P. R.

S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgen. 174, 323–331 (2000).
[CrossRef]

Nahum Goldberg, S.

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

Nakamuta, M.

M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
[CrossRef]

K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

Nawata, H.

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

Niver, E.

Noe, K.

Okubo, K.

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

Olivero, M.

D. Tosi, M. Olivero, G. Perrone, and A. Vallan, “Weigh-in-motion through fibre Bragg grating optical sensors,” Electron. Lett. 46, 1223–1225 (2010).
[CrossRef]

Olivo, M.

A. Orlando, G. Leandro, M. Olivo, A. Andriulli, and M. Cottone, “Radiofrequency thermal ablation vs percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials,” Am. J. Gastroenterol. 104, 514–524 (2009).

Onji, M.

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

Orlando, A.

A. Orlando, G. Leandro, M. Olivo, A. Andriulli, and M. Cottone, “Radiofrequency thermal ablation vs percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials,” Am. J. Gastroenterol. 104, 514–524 (2009).

Othonos, A.

A. Othonos and K. Kalli, “Properties of fiber Bragg gratings,” in Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), pp. 95–147.

Pacella, C. M.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Pacella, S.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Padma, S.

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100, 619–634 (2009).
[CrossRef]

Pereira, P. L.

P. L. Pereira, “Actual role of radiofreqency ablation of liver metastases,” European Radiol. 7, 291–299 (2007).

Perrone, G.

D. Tosi, M. Olivero, G. Perrone, and A. Vallan, “Weigh-in-motion through fibre Bragg grating optical sensors,” Electron. Lett. 46, 1223–1225 (2010).
[CrossRef]

Poeggel, S.

S. Poeggel, D. Tosi, G. Leen, and E. Lewis, “Diaphragm etching in extrinsic Fabry–Perot interferometric fiber-optic pressure sensors,” in Conference on Lasers and Electro-Optics (CLEO) Europe, Munich, Germany (2013).

Polygerinos, P.

P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-compatible fiber-optic force sensors for catheterization procedures,” IEEE Sens. J. 10, 1598–1608 (2010).
[CrossRef]

Ramkaransingh, J. R.

B. J. Wood, J. R. Ramkaransingh, M. S. Tito Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer 94, 443–451 (2002).
[CrossRef]

Rao, Y. J.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Rao, Y.-J.

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
[CrossRef]

Razavi, R.

P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-compatible fiber-optic force sensors for catheterization procedures,” IEEE Sens. J. 10, 1598–1608 (2010).
[CrossRef]

Ren, D.

Roman, H.

Roriz, P.

P. Roriz, O. Frazao, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simoes, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 050903 (2013).
[CrossRef]

Rossi, Z.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Sakai, H.

M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
[CrossRef]

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).

Santos, J. L.

P. Roriz, O. Frazao, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simoes, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 050903 (2013).
[CrossRef]

Sato, M.

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

Sato, N.

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

Schaeffter, T.

P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-compatible fiber-optic force sensors for catheterization procedures,” IEEE Sens. J. 10, 1598–1608 (2010).
[CrossRef]

Seneviratne, L. D.

P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-compatible fiber-optic force sensors for catheterization procedures,” IEEE Sens. J. 10, 1598–1608 (2010).
[CrossRef]

Shi, X.

Shibata, T.

T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002).
[CrossRef]

Simoes, J. A.

P. Roriz, O. Frazao, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simoes, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 050903 (2013).
[CrossRef]

Solbiati, L.

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

Sorge, R.

F. Ahmad, G. Gravante, N. Bhardwai, A. Strickland, R. Basit, and R. Sorge, “Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy,” J. Gastrointest. Surg. 14, 1963–1968 (2010).

Spillman, W. B.

E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley Interscience, 1991).

Strickland, A.

F. Ahmad, G. Gravante, N. Bhardwai, A. Strickland, R. Basit, and R. Sorge, “Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy,” J. Gastrointest. Surg. 14, 1963–1968 (2010).

Sun, J.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sens. Actuators A 163, 42–47 (2010).
[CrossRef]

Sun, Y.

Tito Fojo, M. S.

B. J. Wood, J. R. Ramkaransingh, M. S. Tito Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer 94, 443–451 (2002).
[CrossRef]

Tosi, D.

D. Tosi, M. Olivero, G. Perrone, and A. Vallan, “Weigh-in-motion through fibre Bragg grating optical sensors,” Electron. Lett. 46, 1223–1225 (2010).
[CrossRef]

S. Poeggel, D. Tosi, G. Leen, and E. Lewis, “Diaphragm etching in extrinsic Fabry–Perot interferometric fiber-optic pressure sensors,” in Conference on Lasers and Electro-Optics (CLEO) Europe, Munich, Germany (2013).

Trujillo, M.

M. Trujillo, J. Alba, and E. Berjano, “Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,” Int. J. Hyperthermia 28, 62–68 (2012).
[CrossRef]

Udd, E.

E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley Interscience, 1991).

Ueda, S.

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

Vallan, A.

D. Tosi, M. Olivero, G. Perrone, and A. Vallan, “Weigh-in-motion through fibre Bragg grating optical sensors,” Electron. Lett. 46, 1223–1225 (2010).
[CrossRef]

Valle, D.

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

Walther, M. M.

B. J. Wood, J. R. Ramkaransingh, M. S. Tito Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer 94, 443–451 (2002).
[CrossRef]

Watanabe, Y.

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

Wood, B. J.

B. J. Wood, J. R. Ramkaransingh, M. S. Tito Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer 94, 443–451 (2002).
[CrossRef]

Xu, F.

Yamamoto, Y.

T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002).
[CrossRef]

Yang, C.

M. Zhou, C. Yang, Z. Liu, J. P. Cysyk, and S. Zheng, “An implantable Fabry–Perot pressure sensor fabricated on left ventricular assist device for heart failure,” Biomed. Microdevices 14, 235–245 (2012).
[CrossRef]

Yoshimoto, T.

M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
[CrossRef]

Yu, B.

Yu, M.

Yuan, W.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sens. Actuators A 163, 42–47 (2010).
[CrossRef]

Zbyszewski, D.

P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-compatible fiber-optic force sensors for catheterization procedures,” IEEE Sens. J. 10, 1598–1608 (2010).
[CrossRef]

Zheng, S.

M. Zhou, C. Yang, Z. Liu, J. P. Cysyk, and S. Zheng, “An implantable Fabry–Perot pressure sensor fabricated on left ventricular assist device for heart failure,” Biomed. Microdevices 14, 235–245 (2012).
[CrossRef]

Zhou, M.

M. Zhou, C. Yang, Z. Liu, J. P. Cysyk, and S. Zheng, “An implantable Fabry–Perot pressure sensor fabricated on left ventricular assist device for heart failure,” Biomed. Microdevices 14, 235–245 (2012).
[CrossRef]

Am. J. Gastroenterol. (1)

A. Orlando, G. Leandro, M. Olivo, A. Andriulli, and M. Cottone, “Radiofrequency thermal ablation vs percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials,” Am. J. Gastroenterol. 104, 514–524 (2009).

Am. J. Roentgen. (2)

S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgen. 174, 323–331 (2000).
[CrossRef]

M. J. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgen. 176, 3–16 (2001).
[CrossRef]

Ann. Surg. Oncol. (1)

S. Curley, “Radiofrequency ablation of malignant liver tumors,” Ann. Surg. Oncol. 1, 338–347 (2003).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Biomed. Microdevices (1)

M. Zhou, C. Yang, Z. Liu, J. P. Cysyk, and S. Zheng, “An implantable Fabry–Perot pressure sensor fabricated on left ventricular assist device for heart failure,” Biomed. Microdevices 14, 235–245 (2012).
[CrossRef]

Cancer (1)

B. J. Wood, J. R. Ramkaransingh, M. S. Tito Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer 94, 443–451 (2002).
[CrossRef]

Comp. Hepatol. (1)

M. Nakamuta, M. Kohjima, S. Morizono, T. Yoshimoto, Y. Miyagi, H. Sakai, M. Enjoji, and K. Kotoh, “Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods,” Comp. Hepatol. 5, 10 (2006).
[CrossRef]

Electron. Lett. (1)

D. Tosi, M. Olivero, G. Perrone, and A. Vallan, “Weigh-in-motion through fibre Bragg grating optical sensors,” Electron. Lett. 46, 1223–1225 (2010).
[CrossRef]

European Radiol. (1)

P. L. Pereira, “Actual role of radiofreqency ablation of liver metastases,” European Radiol. 7, 291–299 (2007).

Gastroenterology (1)

M. Sato, Y. Watanabe, S. Ueda, S. Iseki, Y. Abe, N. Sato, S. Kimura, K. Okubo, and M. Onji, “Microwave coagulation therapy for hepatocellular carcinoma,” Gastroenterology 110, 1507–1514 (1996).
[CrossRef]

IEEE Sens. J. (2)

K. Bremer, E. Lewis, G. Leen, B. S. Lochmann, and I. A. R. Mueller, “Feedback stabilized interrogation technique for EFPI/FBG hybrid fiber-optic pressure and temperature sensors,” IEEE Sens. J. 12, 133–138 (2012).
[CrossRef]

P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, “MRI-compatible fiber-optic force sensors for catheterization procedures,” IEEE Sens. J. 10, 1598–1608 (2010).
[CrossRef]

Int. J. Hyperthermia (1)

M. Trujillo, J. Alba, and E. Berjano, “Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,” Int. J. Hyperthermia 28, 62–68 (2012).
[CrossRef]

J. Biomed. Opt. (1)

P. Roriz, O. Frazao, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simoes, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 050903 (2013).
[CrossRef]

J. Gastrointest. Surg. (1)

F. Ahmad, G. Gravante, N. Bhardwai, A. Strickland, R. Basit, and R. Sorge, “Large volume hepatic microwave ablation elicits fewer pulmonary changes than radiofrequency or cryotherapy,” J. Gastrointest. Surg. 14, 1963–1968 (2010).

J. Phys. Conf. Ser. (1)

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

J. Surg. Oncol. (1)

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100, 619–634 (2009).
[CrossRef]

Liver Int. (1)

K. Kotoh, M. Nakamuta, S. Morizono, M. Kohjima, E. Arimura, M. Fukushima, M. Enjoji, H. Sakai, and H. Nawata, “A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time,” Liver Int. 25, 542–547 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

Y.-J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12, 227–237 (2006).
[CrossRef]

Opt. Lett. (1)

Photonic Sens. (1)

Y. Jiang and W. Ding, “Recent developments in fiber optic spectral white-light interferometry,” Photonic Sens. 1, 62–71 (2011).
[CrossRef]

Radiology (4)

C. M. Pacella, G. Bizzarri, F. Magnolfi, P. Cecconi, B. Caspani, V. Anelli, A. Bianchini, D. Valle, S. Pacella, G. Manenti, and Z. Rossi, “Laser thermal ablation in the treatment of small hepatocellular carcinoma: results in 74 patients,” Radiology 221, 712–720 (2001).
[CrossRef]

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258, 351–369 (2011).
[CrossRef]

T. Shibata, Y. Iimuro, Y. Yamamoto, Y. Maetani, F. Ametani, K. Itoh, and J. Konishi, “Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy,” Radiology 223, 331–337 (2002).
[CrossRef]

L. Solbiati, T. Livraghi, S. Nahum Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology 221, 159–166 (2001).
[CrossRef]

Sens. Actuators A (1)

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sens. Actuators A 163, 42–47 (2010).
[CrossRef]

World J. Gastroenterol. (1)

K. Kotoh, M. Enjoji, E. Arimura, S. Morizono, M. Kohjima, H. Sakai, and M. Nakamuta, “Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma,” World J. Gastroenterol. 11, 6828–6832 (2005).

Other (4)

E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley Interscience, 1991).

Opsens OPP-M, http://www.opsens.com/en/industries/products/pressure/opp-m/ .

A. Othonos and K. Kalli, “Properties of fiber Bragg gratings,” in Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), pp. 95–147.

S. Poeggel, D. Tosi, G. Leen, and E. Lewis, “Diaphragm etching in extrinsic Fabry–Perot interferometric fiber-optic pressure sensors,” in Conference on Lasers and Electro-Optics (CLEO) Europe, Munich, Germany (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Fabrication process of the EFPI/FBG probe. (1) Fabrication of the FBG: (a) by exposing a single-mode SM125 fiber to UV light through a phase mask, we obtain a 4-mm long uniform FBG (b). (2) Formation of the sensing cavity: (a) the SM fiber is cleaved about 2 mm far from the FBG end, and (b) by means of micropositioners is slid into a hollow capillary until a gap length L=20.6μm is obtained. (c) Then, a splice is made to fuse SM fiber and capillary. The obtained cavity is (d) aligned to a multimode MM200 fiber, having same diameter of the capillary, using micropositioners; when the best alignment is found, (e) a second splice is performed to enclose the air-gap in-between the fibers and the capillary. All fibers are polished prior to alignment and splicing. (3) Diaphragm shortening: (a) the MMF diaphragm is cleaved and manually polished until a length of 10 μm is obtained; then, (b) the probe is immersed in a HF bath to accurately etch the diaphragm until reaching 2.5 μm thickness.

Fig. 2.
Fig. 2.

Combined EFPI/FBG spectrum for different values of pressure and temperature.

Fig. 3.
Fig. 3.

Pressure and temperature sensitivity of the EFPI/FBG probe. (a) Pressure sensitivity, evaluated as air-gap compression ΔL as a function of applied pressure; slope=1.60nm/kPa. (b) Temperature sensitivity of the FBG probe, evaluated as peak wavelength shift Δλ as a function of temperature variation; slope=10.70pm/°C.

Fig. 4.
Fig. 4.

Temperature sensitivity of the EFPI probe. The chart reports the air-gap compression as a function of temperature (left axis), with an estimated slope 51.9pm/°C, and residual error after temperature compensation (right axis).

Fig. 5.
Fig. 5.

RF-heated test chamber setup. The inset shows a picture of the setup, loaded with liver on the top chamber.

Fig. 6.
Fig. 6.

Pressure and temperature readout for simulated RFA, with test chamber loaded with saline solution (0.2% NaCl). The chart reports pressure (left) and temperature (right) measurements, acquired in real time.

Fig. 7.
Fig. 7.

Pressure and temperature readouts for RF heating of porcine liver tissue. The chart reports pressure (left) and temperature (right) measurements, acquired in real time.

Fig. 8.
Fig. 8.

Setup for ex vivo RFA demonstration. The active electrode is a hollow 3-mm needle inserted through the porcine liver tissue that is placed on a metal plate (acting as passive electrode). In the first experiment, the fiber has been guided in with a plastic catheter, which has subsequently been removed to leave the fiber in place; the second experiment has been performed with the fiber probe inserted through the hollow RFA needle.

Fig. 9.
Fig. 9.

First RFA experiment: temperature and pressure traces.

Fig. 10.
Fig. 10.

Second RFA experiment: temperature and pressure traces; x axis shows time, in s.

Fig. 11.
Fig. 11.

Third RFA experiment: temperature and pressure traces.

Fig. 12.
Fig. 12.

Setup for third ex vivo RFA experiment: porcine liver has been inserted in a small chamber to facilitate positioning. Electrode and optical fiber probe are inserted perpendicularly, with a 0.5 cm misalignment between the two tips, only a few millimeters below the liver tissue. The picture, taken after the ablation, shows elliptical shape traces with the thermal lesion (light colored tissue). The optical fiber tip is illuminated with a red laser, and is located in close proximity of the center of the ablation lesion; the illumination shows the 0.5 cm misalignment between the electrode tip and the fiber output.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ΔLΔλ]=[sPsT0kT][ΔPΔT]=[1.60nm/kPa0.0519nm/°C010.70pm/°C][ΔPΔT]
[ΔPΔT]=[0.625kPa/nm3.03·103°C/pm00.09346°C/pm][ΔLΔλ],

Metrics