S. Y. Teng, J. H. Wang, F. R. Li, and W. Zhang, “Talbot image of two-dimensional fractal grating,” Opt. Commun. 315, 103–107 (2014).

[CrossRef]

O. Mendoza-Yero, G. Mínguez-Vega, M. Fernández-Alonso, J. Lancis, E. Tajahuerce, V. Climent, and J. A. Monsoriu, “Optical filters with fractal transmission spectra based on diffractive optics,” Opt. Lett. 34, 560–562 (2009).

[CrossRef]

K. Singh, V. Grewal, and R. Saxena, “Fractal antennas: a novel miniaturization technique for wireless communications,” Internat. J. Recent Trends Engineer. 2, 172–176 (2009).

S. Y. Teng, X. Y. Chen, T. J. Zhou, and C. F. Cheng, “Quasi-Talbot effect of a grating in the deep Fresnel diffraction region,” J. Opt. Soc. Am. A 24, 1656–1665 (2007).

[CrossRef]

S. Y. Teng, N. Y. Zhang, Q. R. Dong, and C. F. Cheng, “Diffraction of a one-dimensional phase grating in the deep Fresnel field,” J. Opt. Soc. Am. A 24, 3636–3643 (2007).

[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).

[CrossRef]

D. C. Méndez and M. Lehman, “Talbot effect with Cantor transmittances,” Optik 115, 439–442 (2004).

[CrossRef]

P. Xi, C. H. Zhou, E. W. Dai, and L. R. Liu, “Generation of near-field hexagonal array illumination with a phase grating,” Opt. Lett. 27, 228–230 (2002).

[CrossRef]

J. P. Gianvittorio and Y. Rahmat-Samii, “Fractals antennas: a novel antenna miniaturization technique, and applications,” IEEE Antennas Propag. Mag. 44, 20–36 (2002).

[CrossRef]

C. Aguirre Vélez, M. Lehman, and M. Garavaglia, “Two-dimensional fractal gratings with variable structure and their diffraction,” Optik 112, 209–217 (2001).

[CrossRef]

M. Lehman, “Fractal diffraction gratings built through rectangular domains,” Opt. Commun. 195, 11–26 (2001).

[CrossRef]

C. Zhou, S. Stankovic, C. Denz, and T. Tschuli, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[CrossRef]

W. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).

[CrossRef]

C. Aguirre Vélez, M. Lehman, and M. Garavaglia, “Two-dimensional fractal gratings with variable structure and their diffraction,” Optik 112, 209–217 (2001).

[CrossRef]

J. W. Brown and R. V. Churchill, Fourier Series and Boundary Value Problems (McGraw-Hill, 1993).

S. Y. Teng, X. Y. Chen, T. J. Zhou, and C. F. Cheng, “Quasi-Talbot effect of a grating in the deep Fresnel diffraction region,” J. Opt. Soc. Am. A 24, 1656–1665 (2007).

[CrossRef]

S. Y. Teng, N. Y. Zhang, Q. R. Dong, and C. F. Cheng, “Diffraction of a one-dimensional phase grating in the deep Fresnel field,” J. Opt. Soc. Am. A 24, 3636–3643 (2007).

[CrossRef]

J. W. Brown and R. V. Churchill, Fourier Series and Boundary Value Problems (McGraw-Hill, 1993).

C. Zhou, S. Stankovic, C. Denz, and T. Tschuli, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[CrossRef]

M. L. Lapidus and M. V. Frankenhuysen, Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions (Birkhäuser, 2000).

C. Aguirre Vélez, M. Lehman, and M. Garavaglia, “Two-dimensional fractal gratings with variable structure and their diffraction,” Optik 112, 209–217 (2001).

[CrossRef]

J. P. Gianvittorio and Y. Rahmat-Samii, “Fractals antennas: a novel antenna miniaturization technique, and applications,” IEEE Antennas Propag. Mag. 44, 20–36 (2002).

[CrossRef]

K. Singh, V. Grewal, and R. Saxena, “Fractal antennas: a novel miniaturization technique for wireless communications,” Internat. J. Recent Trends Engineer. 2, 172–176 (2009).

C. F. Kao and M. H. Lu, “Optical encoder based on the fractional Talbot Effect,” Opt. Commun. 250, 16–23 (2005).

[CrossRef]

M. L. Lapidus and M. V. Frankenhuysen, Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions (Birkhäuser, 2000).

D. C. Méndez and M. Lehman, “Talbot effect with Cantor transmittances,” Optik 115, 439–442 (2004).

[CrossRef]

M. Lehman, “Fractal diffraction gratings built through rectangular domains,” Opt. Commun. 195, 11–26 (2001).

[CrossRef]

C. Aguirre Vélez, M. Lehman, and M. Garavaglia, “Two-dimensional fractal gratings with variable structure and their diffraction,” Optik 112, 209–217 (2001).

[CrossRef]

S. Y. Teng, J. H. Wang, F. R. Li, and W. Zhang, “Talbot image of two-dimensional fractal grating,” Opt. Commun. 315, 103–107 (2014).

[CrossRef]

C. Zhang, W. Zhang, F. R. Li, J. H. Wang, and S. Y. Teng, “Talbot effect of quasi-periodic grating,” Appl. Opt. 52, 5083–5087 (2013).

[CrossRef]

C. F. Kao and M. H. Lu, “Optical encoder based on the fractional Talbot Effect,” Opt. Commun. 250, 16–23 (2005).

[CrossRef]

B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, 1982).

D. C. Méndez and M. Lehman, “Talbot effect with Cantor transmittances,” Optik 115, 439–442 (2004).

[CrossRef]

J. P. Gianvittorio and Y. Rahmat-Samii, “Fractals antennas: a novel antenna miniaturization technique, and applications,” IEEE Antennas Propag. Mag. 44, 20–36 (2002).

[CrossRef]

K. Singh, V. Grewal, and R. Saxena, “Fractal antennas: a novel miniaturization technique for wireless communications,” Internat. J. Recent Trends Engineer. 2, 172–176 (2009).

K. Singh, V. Grewal, and R. Saxena, “Fractal antennas: a novel miniaturization technique for wireless communications,” Internat. J. Recent Trends Engineer. 2, 172–176 (2009).

C. Zhou, S. Stankovic, C. Denz, and T. Tschuli, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[CrossRef]

W. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).

[CrossRef]

S. Y. Teng, J. H. Wang, F. R. Li, and W. Zhang, “Talbot image of two-dimensional fractal grating,” Opt. Commun. 315, 103–107 (2014).

[CrossRef]

C. Zhang, W. Zhang, F. R. Li, J. H. Wang, and S. Y. Teng, “Talbot effect of quasi-periodic grating,” Appl. Opt. 52, 5083–5087 (2013).

[CrossRef]

S. Y. Teng, X. Y. Chen, T. J. Zhou, and C. F. Cheng, “Quasi-Talbot effect of a grating in the deep Fresnel diffraction region,” J. Opt. Soc. Am. A 24, 1656–1665 (2007).

[CrossRef]

S. Y. Teng, N. Y. Zhang, Q. R. Dong, and C. F. Cheng, “Diffraction of a one-dimensional phase grating in the deep Fresnel field,” J. Opt. Soc. Am. A 24, 3636–3643 (2007).

[CrossRef]

C. Zhou, S. Stankovic, C. Denz, and T. Tschuli, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[CrossRef]

S. Y. Teng, J. H. Wang, F. R. Li, and W. Zhang, “Talbot image of two-dimensional fractal grating,” Opt. Commun. 315, 103–107 (2014).

[CrossRef]

C. Zhang, W. Zhang, F. R. Li, J. H. Wang, and S. Y. Teng, “Talbot effect of quasi-periodic grating,” Appl. Opt. 52, 5083–5087 (2013).

[CrossRef]

S. Y. Teng, J. H. Wang, F. R. Li, and W. Zhang, “Talbot image of two-dimensional fractal grating,” Opt. Commun. 315, 103–107 (2014).

[CrossRef]

C. Zhang, W. Zhang, F. R. Li, J. H. Wang, and S. Y. Teng, “Talbot effect of quasi-periodic grating,” Appl. Opt. 52, 5083–5087 (2013).

[CrossRef]

C. Zhou, S. Stankovic, C. Denz, and T. Tschuli, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[CrossRef]

N. Gao, Y. C. Zhang, and C. Q. Xie, “Circular Fibonacci gratings,” Appl. Opt. 50, G142–G148 (2011).

[CrossRef]

C. Zhang, W. Zhang, F. R. Li, J. H. Wang, and S. Y. Teng, “Talbot effect of quasi-periodic grating,” Appl. Opt. 52, 5083–5087 (2013).

[CrossRef]

J. P. Gianvittorio and Y. Rahmat-Samii, “Fractals antennas: a novel antenna miniaturization technique, and applications,” IEEE Antennas Propag. Mag. 44, 20–36 (2002).

[CrossRef]

K. Singh, V. Grewal, and R. Saxena, “Fractal antennas: a novel miniaturization technique for wireless communications,” Internat. J. Recent Trends Engineer. 2, 172–176 (2009).

P. Szwaykowski, “Self-imaging in polar coordinates,” J. Opt. Soc. Am. A 5, 185–191 (1988).

[CrossRef]

S. Y. Teng, X. Y. Chen, T. J. Zhou, and C. F. Cheng, “Quasi-Talbot effect of a grating in the deep Fresnel diffraction region,” J. Opt. Soc. Am. A 24, 1656–1665 (2007).

[CrossRef]

S. Y. Teng, N. Y. Zhang, Q. R. Dong, and C. F. Cheng, “Diffraction of a one-dimensional phase grating in the deep Fresnel field,” J. Opt. Soc. Am. A 24, 3636–3643 (2007).

[CrossRef]

S. Y. Teng, J. H. Wang, F. R. Li, and W. Zhang, “Talbot image of two-dimensional fractal grating,” Opt. Commun. 315, 103–107 (2014).

[CrossRef]

C. Zhou, S. Stankovic, C. Denz, and T. Tschuli, “Phase codes of Talbot array illumination for encoding holographic multiplexing storage,” Opt. Commun. 161, 209–211 (1999).

[CrossRef]

C. F. Kao and M. H. Lu, “Optical encoder based on the fractional Talbot Effect,” Opt. Commun. 250, 16–23 (2005).

[CrossRef]

M. Lehman, “Fractal diffraction gratings built through rectangular domains,” Opt. Commun. 195, 11–26 (2001).

[CrossRef]

N. Bonod and J. Neauport, “Design of a full-silica pulse-compression grating,” Opt. Lett. 33, 58–60 (2008).

[CrossRef]

O. Mendoza-Yero, G. Mínguez-Vega, M. Fernández-Alonso, J. Lancis, E. Tajahuerce, V. Climent, and J. A. Monsoriu, “Optical filters with fractal transmission spectra based on diffractive optics,” Opt. Lett. 34, 560–562 (2009).

[CrossRef]

P. Xi, C. H. Zhou, E. W. Dai, and L. R. Liu, “Generation of near-field hexagonal array illumination with a phase grating,” Opt. Lett. 27, 228–230 (2002).

[CrossRef]

D. C. Méndez and M. Lehman, “Talbot effect with Cantor transmittances,” Optik 115, 439–442 (2004).

[CrossRef]

C. Aguirre Vélez, M. Lehman, and M. Garavaglia, “Two-dimensional fractal gratings with variable structure and their diffraction,” Optik 112, 209–217 (2001).

[CrossRef]

W. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).

[CrossRef]

B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, 1982).

J. W. Brown and R. V. Churchill, Fourier Series and Boundary Value Problems (McGraw-Hill, 1993).

M. L. Lapidus and M. V. Frankenhuysen, Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions (Birkhäuser, 2000).