Abstract

This paper investigates the behavior of the Verdet constant for cobalt ferrite (CoFe2O4) nanoparticles polymer composite films at low temperatures using a 532 nm laser source. An experimental setup for Faraday rotation (FR) at low temperatures is introduced and FRs were measured at various temperatures. Verdet constants were deduced from the paramagnetic model for terbium gallium garnet glass where 4× improvement was observed at 40° K for CoFe2O4 composite film.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Winter, C. Mok, and A. Kumarakrishnan, “Tools for laser spectroscopy: the design and construction of a Faraday isolator,” Can. J. Phys. 84, 845–855 (2006).
    [CrossRef]
  2. J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (∼0.5–300  nT), low frequency (5–100  Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett. 90, 132502 (2007).
    [CrossRef]
  3. C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
    [CrossRef]
  4. R. Sobolewski and J.-R. Park, “Magneto-optical modulator for superconducting digital output interface,” IEEE Trans. Appl. Supercond. 11, 727–730 (2001).
    [CrossRef]
  5. M. R. Koblischka and R. J. Wijngaarden, “Magneto-optical investigations of superconductors,” Supercond. Sci. Technol. 8, 199–213 (1995).
    [CrossRef]
  6. P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).
  7. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991).
    [CrossRef]
  8. U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).
  9. N. P. Barnes and L. B. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992).
    [CrossRef]
  10. J. A. Davis and R. M. Bunch, “Temperature dependence of the Faraday rotation of Hoya FR-5 glass,” Appl. Opt. 23, 633–636 (1984).
    [CrossRef]
  11. K. Maaz, M. Usman, S. Karim, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature,” J. Appl. Phys. 105, 113917 (2009).
    [CrossRef]
  12. A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
    [CrossRef]
  13. http://www.lakeshore.com/products/Cryogenic-Temperature-Sensors/Cernox/Models/Pages/Specifications.aspx .
  14. http://www.hindsinstruments.com/wpcontent/uploads/Determining_Ratio.pdf .
  15. D. H. Goldstein, Polarized Light (CRC, 2010).
  16. V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626–629 (2008).
    [CrossRef]
  17. G. van Harten, F. Snik, and C. U. Keller, “Polarization properties of real aluminum mirrors I. Influence of the aluminum oxide layers,” Astron. Soc. Pac. Conf. Ser. 121, 377–383 (2009).
    [CrossRef]
  18. http://refractiveindex.info/?group=METALS&material=Aluminium .
  19. P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).
  20. J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

2012 (1)

2010 (1)

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

2009 (2)

G. van Harten, F. Snik, and C. U. Keller, “Polarization properties of real aluminum mirrors I. Influence of the aluminum oxide layers,” Astron. Soc. Pac. Conf. Ser. 121, 377–383 (2009).
[CrossRef]

K. Maaz, M. Usman, S. Karim, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature,” J. Appl. Phys. 105, 113917 (2009).
[CrossRef]

2008 (2)

V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626–629 (2008).
[CrossRef]

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).

2007 (1)

J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (∼0.5–300  nT), low frequency (5–100  Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett. 90, 132502 (2007).
[CrossRef]

2006 (1)

S. Winter, C. Mok, and A. Kumarakrishnan, “Tools for laser spectroscopy: the design and construction of a Faraday isolator,” Can. J. Phys. 84, 845–855 (2006).
[CrossRef]

2005 (1)

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

2002 (1)

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

2001 (1)

R. Sobolewski and J.-R. Park, “Magneto-optical modulator for superconducting digital output interface,” IEEE Trans. Appl. Supercond. 11, 727–730 (2001).
[CrossRef]

1995 (1)

M. R. Koblischka and R. J. Wijngaarden, “Magneto-optical investigations of superconductors,” Supercond. Sci. Technol. 8, 199–213 (1995).
[CrossRef]

1992 (1)

1991 (1)

1984 (1)

1982 (1)

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Affolderbach, C.

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

Barnes, N. P.

Bertino, M. F.

K. Maaz, M. Usman, S. Karim, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature,” J. Appl. Phys. 105, 113917 (2009).
[CrossRef]

Bunch, R. M.

Choi, K.-H.

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Davis, J. A.

Day, G. W.

Deeter, M. N.

Eden, J. G.

J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (∼0.5–300  nT), low frequency (5–100  Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett. 90, 132502 (2007).
[CrossRef]

Foerier, S.

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).

Gangopadhyay, P.

A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
[CrossRef]

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).

Gao, J.

J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (∼0.5–300  nT), low frequency (5–100  Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett. 90, 132502 (2007).
[CrossRef]

Goldstein, D. H.

D. H. Goldstein, Polarized Light (CRC, 2010).

Grant, H. R.

Greenlee, C.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

Hafez, J. M.

J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (∼0.5–300  nT), low frequency (5–100  Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett. 90, 132502 (2007).
[CrossRef]

Hasanain, S. K.

K. Maaz, M. Usman, S. Karim, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature,” J. Appl. Phys. 105, 113917 (2009).
[CrossRef]

Himmelhuber, R.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

Jung, J.-S.

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Karim, S.

K. Maaz, M. Usman, S. Karim, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature,” J. Appl. Phys. 105, 113917 (2009).
[CrossRef]

Keller, C. U.

G. van Harten, F. Snik, and C. U. Keller, “Polarization properties of real aluminum mirrors I. Influence of the aluminum oxide layers,” Astron. Soc. Pac. Conf. Ser. 121, 377–383 (2009).
[CrossRef]

Kim, Y.-R.

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Knappe, S.

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

Koblischka, M. R.

M. R. Koblischka and R. J. Wijngaarden, “Magneto-optical investigations of superconductors,” Supercond. Sci. Technol. 8, 199–213 (1995).
[CrossRef]

Krinchik, G. S.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Kruglyashov, S. B.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Kumarakrishnan, A.

S. Winter, C. Mok, and A. Kumarakrishnan, “Tools for laser spectroscopy: the design and construction of a Faraday isolator,” Can. J. Phys. 84, 845–855 (2006).
[CrossRef]

Lee, S.-H.

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Levitin, R. Z.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Lim, J.-H.

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Lopez-Santiago, A.

A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
[CrossRef]

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).

Maaz, K.

K. Maaz, M. Usman, S. Karim, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature,” J. Appl. Phys. 105, 113917 (2009).
[CrossRef]

Malkinski, L.

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Milner, T. E.

Mok, C.

S. Winter, C. Mok, and A. Kumarakrishnan, “Tools for laser spectroscopy: the design and construction of a Faraday isolator,” Can. J. Phys. 84, 845–855 (2006).
[CrossRef]

Mukimov, K. M.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Mumtaz, A.

K. Maaz, M. Usman, S. Karim, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature,” J. Appl. Phys. 105, 113917 (2009).
[CrossRef]

Norwood, R. A.

A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
[CrossRef]

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).

O’Connor, C. J.

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Oh, S.-L.

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Orlov, V. N.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Park, J.-R.

R. Sobolewski and J.-R. Park, “Magneto-optical modulator for superconducting digital output interface,” IEEE Trans. Appl. Supercond. 11, 727–730 (2001).
[CrossRef]

Persoons, A.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).

Petway, L. B.

Peyghambarian, N.

A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
[CrossRef]

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).

Rose, A. H.

Smith, D. A.

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Snik, F.

G. van Harten, F. Snik, and C. U. Keller, “Polarization properties of real aluminum mirrors I. Influence of the aluminum oxide layers,” Astron. Soc. Pac. Conf. Ser. 121, 377–383 (2009).
[CrossRef]

Sobolewski, R.

R. Sobolewski and J.-R. Park, “Magneto-optical modulator for superconducting digital output interface,” IEEE Trans. Appl. Supercond. 11, 727–730 (2001).
[CrossRef]

Sokolov, B. Y.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Stähler, M.

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

Stokes, K. L.

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

Thomas, J.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).

Usman, M.

K. Maaz, M. Usman, S. Karim, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature,” J. Appl. Phys. 105, 113917 (2009).
[CrossRef]

Valev, V. K.

V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626–629 (2008).
[CrossRef]

Valiev, U. V.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

van Harten, G.

G. van Harten, F. Snik, and C. U. Keller, “Polarization properties of real aluminum mirrors I. Influence of the aluminum oxide layers,” Astron. Soc. Pac. Conf. Ser. 121, 377–383 (2009).
[CrossRef]

Verbiest, T.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626–629 (2008).
[CrossRef]

Voorakaranam, R.

A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012).
[CrossRef]

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).

Wijngaarden, R. J.

M. R. Koblischka and R. J. Wijngaarden, “Magneto-optical investigations of superconductors,” Supercond. Sci. Technol. 8, 199–213 (1995).
[CrossRef]

Williams, P. A.

Winter, S.

S. Winter, C. Mok, and A. Kumarakrishnan, “Tools for laser spectroscopy: the design and construction of a Faraday isolator,” Can. J. Phys. 84, 845–855 (2006).
[CrossRef]

Wouters, J.

V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626–629 (2008).
[CrossRef]

Wynands, R.

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

Yamada, H.

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

Am. J. Phys. (1)

V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626–629 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

J. M. Hafez, J. Gao, and J. G. Eden, “Detection of weak (∼0.5–300  nT), low frequency (5–100  Hz) magnetic fields at room temperature by kilohertz modulation of the magneto-optical hysteresis in rare earth-iron garnet films,” Appl. Phys. Lett. 90, 132502 (2007).
[CrossRef]

Astron. Soc. Pac. Conf. Ser. (1)

G. van Harten, F. Snik, and C. U. Keller, “Polarization properties of real aluminum mirrors I. Influence of the aluminum oxide layers,” Astron. Soc. Pac. Conf. Ser. 121, 377–383 (2009).
[CrossRef]

Can. J. Phys. (1)

S. Winter, C. Mok, and A. Kumarakrishnan, “Tools for laser spectroscopy: the design and construction of a Faraday isolator,” Can. J. Phys. 84, 845–855 (2006).
[CrossRef]

IEEE Trans. Appl. Supercond. (1)

R. Sobolewski and J.-R. Park, “Magneto-optical modulator for superconducting digital output interface,” IEEE Trans. Appl. Supercond. 11, 727–730 (2001).
[CrossRef]

J. Appl. Phys. (2)

K. Maaz, M. Usman, S. Karim, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature,” J. Appl. Phys. 105, 113917 (2009).
[CrossRef]

J.-S. Jung, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor, “CoFe2O4 nanostructures with high coercivity,” J. Appl. Phys. 97, 10F306 (2005).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C112, 8032–8037 (2008).

Nonlinear Opt. Quantum Opt. (1)

P. Gangopadhyay, A. Lopez-Santiago, R. Voorakaranam, R. Himmelhuber, C. Greenlee, J. Thomas, A. Persoons, R. A. Norwood, T. Verbiest, H. Yamada, and N. Peyghambarian, “Magnetite-polymethylmethacrylate core-shell nanocomposites: applications in all optical magnetometers,” Nonlinear Opt. Quantum Opt. 41, 87–104 (2010).

Opt. Mater. Express (1)

Phys. Solid State (1)

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Supercond. Sci. Technol. (1)

M. R. Koblischka and R. J. Wijngaarden, “Magneto-optical investigations of superconductors,” Supercond. Sci. Technol. 8, 199–213 (1995).
[CrossRef]

Other (4)

http://www.lakeshore.com/products/Cryogenic-Temperature-Sensors/Cernox/Models/Pages/Specifications.aspx .

http://www.hindsinstruments.com/wpcontent/uploads/Determining_Ratio.pdf .

D. H. Goldstein, Polarized Light (CRC, 2010).

http://refractiveindex.info/?group=METALS&material=Aluminium .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for FR at cryogenic temperatures. The insets show the upper cage with right angle mirrors glued to the ceiling at the top and a general side view at the bottom left. The inset on the right shows the bottom ring that holds the sample between the ring and upper cage.

Fig. 2.
Fig. 2.

(a) FR measured for fused silica (0.75 mm), BK7 (0.17 mm) and ion exchange glass (1.5 mm) at room temperature by placing PEM 100 after the coupling mirror (postmodulation scheme) and (b) FR from BK7, fused silica by placing the PEM before the coupling prism (premodulation scheme).

Fig. 3.
Fig. 3.

(a) FRss for 1.5 mm thick IOG at 56°K, 120°K, and 293°K. (b) Verdet constant of IOG at various temperatures.

Fig. 4.
Fig. 4.

Picture of a sandwiched 4 wt. % CoFe2O4 composite films between two BK7 glass substrates glued to the ring.

Fig. 5.
Fig. 5.

FR measurement for (a) 55 μm thick 4 wt. % CoFe2O4 composite film from 40°K to 201°K and (b) Verdet constant calculated from FR measurements for 55 μm thick composite film.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

M=MθMPEM(45°)MRMFRMRMFRMRM(0),
M=MθMRMFRMRMFRMRMPEM(45°)·M(0),
M(0)=12[1100110000000000],MR=[1000010000100001],
MFR=[10000cos(2α)sin(2α)00sin(2α)cos(2α)00001],Mθ=[1cos(2θ)sin(2θ)0cos(2θ)cos2(2θ)cos(2θ)sin(2θ)0sin(2θ)cos(2θ)sin(2θ)sin2(2θ)00001],
MPEM(45)=[10000cos(δ)0sin(δ)00100sin(δ)0cos(δ)],
I=14[1+sin(2θ)sin(4α)+cos(2θ)cos(4α)J0(A)cos(2θ)cos(4α)2J2(A)cos(2π2ft)],
x(H)=0.86cos(2θ)cos(4α)1+sin(2θ)sin(4α),
x(H)=m2UACnUDC,
m=1+Power atPD2Power atPD1,
n=(GainxPower)atPD1(GainxPower)atPD2.
α20.26[x(H=0)x(H)1](degrees),
α23.55[x(H)x(H=0)](degrees),
dVdT=37.7883°/T·m·°K,
V=α[dVdT][dαdT]1,

Metrics