Abstract

In this article, we disclose a method to fabricate a liquid crystal (LC) Fresnel zone lens (FZL) with high efficiency. The LCFZL, based on patterned planar-aligned regions, has been prepared by means of a two-step photoalignment technique. The proposed binary-phase LCFZL manifests 39% diffraction efficiency at the focal point, which is close to the theoretical limit, 41%. Moreover, because of a lower driving voltage and faster response time, these elements could find application in many modern devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7, 215–219 (2011).
    [CrossRef]
  2. C. Dorrer, S. K. H. Wei, P. Leung, M. Vargas, K. Wegman, J. Boulé, Z. Zhao, K. L. Marshall, and S. H. Chen, “High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices,” Opt. Lett. 36, 4035–4037 (2011).
    [CrossRef]
  3. X. Q. Wang, F. Fan, J. T. Sun, L. Wang, A. Srivastava, and V. G. Chigrinov, “Evaluation of LC Fresnel phase plate utilized as colour filter,” Mol. Cryst. Liq. Cryst. 559, 228–240 (2012).
    [CrossRef]
  4. S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107, 151–155 (2012).
    [CrossRef]
  5. S. C. Jeng, S. J. Hwang, J. S. Horng, and K. R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV‐modified alignment film,” Opt. Express 18, 26325–26331 (2010).
    [CrossRef]
  6. M. S. Millán, E. Pérez-Cabré, and J. Otón, “Multiplexing schemes for an achromatic programmable diffractive lens,” J. Phys. 139, 012016 (2008).
    [CrossRef]
  7. X. Q. Wang, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38, 1775–1777 (2013).
    [CrossRef]
  8. C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46, 4144–4147 (2007).
    [CrossRef]
  9. Y. M. Lou, Q. K. Liu, H. Wang, Y. C. Shi, and S. L. He, “Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens,” Appl. Opt. 49, 4995–5000 (2010).
    [CrossRef]
  10. H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, “All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals,” Appl. Opt. 50, 4295–4301 (2011).
    [CrossRef]
  11. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-stabilized liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
    [CrossRef]
  12. Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13, 4141–4147 (2005).
    [CrossRef]
  13. J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102, 161106 (2013).
    [CrossRef]
  14. Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
    [CrossRef]
  15. H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” EPL 87, 64001 (2009).
  16. L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900–2906 (2007).
    [CrossRef]
  17. K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15, 14078–14085 (2007).
    [CrossRef]
  18. Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
    [CrossRef]
  19. T. H. Lin, Y. Huang, A. Y. G. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14, 2359–2364 (2006).
    [CrossRef]
  20. A. K. Srivastava and R. Manohar, “Guest–host mode ferroelectric liquid crystals,” Liq. Cryst. 38, 183–190 (2011).
    [CrossRef]
  21. V. Chigrinov, V. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).
  22. J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38, 2342–2344 (2013).
    [CrossRef]
  23. W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
    [CrossRef]
  24. K. C. Lo, J. D. Wang, and C. R. Lee, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
    [CrossRef]

2013 (3)

2012 (3)

X. Q. Wang, F. Fan, J. T. Sun, L. Wang, A. Srivastava, and V. G. Chigrinov, “Evaluation of LC Fresnel phase plate utilized as colour filter,” Mol. Cryst. Liq. Cryst. 559, 228–240 (2012).
[CrossRef]

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107, 151–155 (2012).
[CrossRef]

W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

2011 (4)

2010 (3)

2009 (1)

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” EPL 87, 64001 (2009).

2008 (1)

M. S. Millán, E. Pérez-Cabré, and J. Otón, “Multiplexing schemes for an achromatic programmable diffractive lens,” J. Phys. 139, 012016 (2008).
[CrossRef]

2007 (4)

C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46, 4144–4147 (2007).
[CrossRef]

L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900–2906 (2007).
[CrossRef]

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15, 14078–14085 (2007).
[CrossRef]

K. C. Lo, J. D. Wang, and C. R. Lee, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

2006 (1)

2005 (1)

2003 (2)

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-stabilized liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Boulé, J.

Chen, C.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Chen, S. H.

Chen, T. A.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107, 151–155 (2012).
[CrossRef]

Cheng, K. T.

Chigrinov, V.

W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

V. Chigrinov, V. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Chigrinov, V. G.

Dorrer, C.

Fan, F.

X. Q. Wang, F. Fan, J. T. Sun, L. Wang, A. Srivastava, and V. G. Chigrinov, “Evaluation of LC Fresnel phase plate utilized as colour filter,” Mol. Cryst. Liq. Cryst. 559, 228–240 (2012).
[CrossRef]

Fan, Y. H.

Fuh, A. Y.

Fuh, A. Y. G.

Guo, L.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

He, S. L.

Horng, J. S.

Hu, W.

W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Huang, Y.

Hwang, S. J.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107, 151–155 (2012).
[CrossRef]

S. C. Jeng, S. J. Hwang, J. S. Horng, and K. R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV‐modified alignment film,” Opt. Express 18, 26325–26331 (2010).
[CrossRef]

Jashnsaz, H.

Jau, H. C.

Jeng, S. C.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107, 151–155 (2012).
[CrossRef]

S. C. Jeng, S. J. Hwang, J. S. Horng, and K. R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV‐modified alignment film,” Opt. Express 18, 26325–26331 (2010).
[CrossRef]

Khabbazi, A.

Kozenkov, V.

V. Chigrinov, V. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Kwok, H. S.

Lee, C. R.

K. C. Lo, J. D. Wang, and C. R. Lee, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46, 4144–4147 (2007).
[CrossRef]

Leung, P.

Li, A. W.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Li, Y.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Liang, X.

W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Lin, K. R.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107, 151–155 (2012).
[CrossRef]

S. C. Jeng, S. J. Hwang, J. S. Horng, and K. R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV‐modified alignment film,” Opt. Express 18, 26325–26331 (2010).
[CrossRef]

Lin, L. C.

Lin, T. H.

Lin, X. W.

W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Liu, C. K.

Liu, Q. K.

Lo, K. C.

C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46, 4144–4147 (2007).
[CrossRef]

K. C. Lo, J. D. Wang, and C. R. Lee, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

Lou, Y. M.

Lu, J. G.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7, 215–219 (2011).
[CrossRef]

Lu, Y. Q.

W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Manohar, R.

A. K. Srivastava and R. Manohar, “Guest–host mode ferroelectric liquid crystals,” Liq. Cryst. 38, 183–190 (2011).
[CrossRef]

Marshall, K. L.

Millán, M. S.

M. S. Millán, E. Pérez-Cabré, and J. Otón, “Multiplexing schemes for an achromatic programmable diffractive lens,” J. Phys. 139, 012016 (2008).
[CrossRef]

Mo, T. S.

C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46, 4144–4147 (2007).
[CrossRef]

Mohajerani, E.

H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, “All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals,” Appl. Opt. 50, 4295–4301 (2011).
[CrossRef]

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” EPL 87, 64001 (2009).

Moheghi, A.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” EPL 87, 64001 (2009).

Nataj, N. H.

H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, “All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals,” Appl. Opt. 50, 4295–4301 (2011).
[CrossRef]

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” EPL 87, 64001 (2009).

Nemati, H.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” EPL 87, 64001 (2009).

Niu, L. G.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Otón, J.

M. S. Millán, E. Pérez-Cabré, and J. Otón, “Multiplexing schemes for an achromatic programmable diffractive lens,” J. Phys. 139, 012016 (2008).
[CrossRef]

Pérez-Cabré, E.

M. S. Millán, E. Pérez-Cabré, and J. Otón, “Multiplexing schemes for an achromatic programmable diffractive lens,” J. Phys. 139, 012016 (2008).
[CrossRef]

Rad, M. B.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” EPL 87, 64001 (2009).

Ren, H.

J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13, 4141–4147 (2005).
[CrossRef]

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-stabilized liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Shi, Y. C.

Shieh, H. P. D.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7, 215–219 (2011).
[CrossRef]

Song, Y.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7, 215–219 (2011).
[CrossRef]

Srivastava, A.

X. Q. Wang, F. Fan, J. T. Sun, L. Wang, A. Srivastava, and V. G. Chigrinov, “Evaluation of LC Fresnel phase plate utilized as colour filter,” Mol. Cryst. Liq. Cryst. 559, 228–240 (2012).
[CrossRef]

Srivastava, A. K.

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38, 2342–2344 (2013).
[CrossRef]

X. Q. Wang, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38, 1775–1777 (2013).
[CrossRef]

W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

A. K. Srivastava and R. Manohar, “Guest–host mode ferroelectric liquid crystals,” Liq. Cryst. 38, 183–190 (2011).
[CrossRef]

Sun, J.

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38, 2342–2344 (2013).
[CrossRef]

J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

Sun, J. T.

X. Q. Wang, F. Fan, J. T. Sun, L. Wang, A. Srivastava, and V. G. Chigrinov, “Evaluation of LC Fresnel phase plate utilized as colour filter,” Mol. Cryst. Liq. Cryst. 559, 228–240 (2012).
[CrossRef]

W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Sun, X. F.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7, 215–219 (2011).
[CrossRef]

Ting, C. L.

Vargas, M.

Wang, H.

Wang, J. D.

K. C. Lo, J. D. Wang, and C. R. Lee, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

Wang, L.

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38, 2342–2344 (2013).
[CrossRef]

X. Q. Wang, F. Fan, J. T. Sun, L. Wang, A. Srivastava, and V. G. Chigrinov, “Evaluation of LC Fresnel phase plate utilized as colour filter,” Mol. Cryst. Liq. Cryst. 559, 228–240 (2012).
[CrossRef]

Wang, X. Q.

X. Q. Wang, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable Fresnel lens based on micropatterned alignment,” Opt. Lett. 38, 1775–1777 (2013).
[CrossRef]

X. Q. Wang, F. Fan, J. T. Sun, L. Wang, A. Srivastava, and V. G. Chigrinov, “Evaluation of LC Fresnel phase plate utilized as colour filter,” Mol. Cryst. Liq. Cryst. 559, 228–240 (2012).
[CrossRef]

Wegman, K.

Wei, S. K. H.

Wu, S. T.

Wu, S. Z.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Xu, S.

J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

Yang, H.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Yu, Y. S.

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

Zhao, Z.

Zhu, G.

W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107, 151–155 (2012).
[CrossRef]

Appl. Phys. Lett. (4)

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-stabilized liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

W. Hu, A. K. Srivastava, X. Liang, X. W. Lin, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100, 111116 (2012).
[CrossRef]

K. C. Lo, J. D. Wang, and C. R. Lee, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

EPL (1)

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” EPL 87, 64001 (2009).

J. Disp. Technol. (1)

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Disp. Technol. 7, 215–219 (2011).
[CrossRef]

J. Opt. (1)

Y. Li, Y. S. Yu, L. Guo, S. Z. Wu, C. Chen, L. G. Niu, A. W. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 035203 (2010).
[CrossRef]

J. Phys. (1)

M. S. Millán, E. Pérez-Cabré, and J. Otón, “Multiplexing schemes for an achromatic programmable diffractive lens,” J. Phys. 139, 012016 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. R. Lee, K. C. Lo, and T. S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Jpn. J. Appl. Phys. 46, 4144–4147 (2007).
[CrossRef]

Liq. Cryst. (1)

A. K. Srivastava and R. Manohar, “Guest–host mode ferroelectric liquid crystals,” Liq. Cryst. 38, 183–190 (2011).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

X. Q. Wang, F. Fan, J. T. Sun, L. Wang, A. Srivastava, and V. G. Chigrinov, “Evaluation of LC Fresnel phase plate utilized as colour filter,” Mol. Cryst. Liq. Cryst. 559, 228–240 (2012).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Other (1)

V. Chigrinov, V. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Configuration and fabrication of FZL. (a) Configuration of FZL. (b) Schematics of photoalignment. (c) Patterned photoalignment process. The zoomed area in the red dotted circle shows the easy axis distribution in the two alignment domains.

Fig. 2.
Fig. 2.

Optical microphotograph of LCFZL with the focal length of (a) 40 cm and (b) 20 cm under two crossed polarizers.

Fig. 3.
Fig. 3.

Diffraction profiles and projection images. (a) Diffraction pattern in diffractive state. (b) Profile in nondiffractive state. (c) Setup for capturing the projection image. (d) Projection image in nondiffractive state. (e) Projection image in diffractive state.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Eout|odd=[E0eine2πλd0]andEout|even=[E0ein02πλd0]
D1=02A1Eoutei2π(A/2A1)dA2A1,

Metrics