Abstract

A multi-central frequency and multi-color smoothing by spectral dispersion (SSD) scheme is presented for better beam smoothing than conventional SSD. One of the difficulties in conventional SSD is the narrow bandwidth limited by efficiency frequency conversion. The new scheme has overcome this problem by using multi-central frequency laser sources and a multi-color beam smoothing system. The multi-central frequency laser sources are incoherent combinations of several pulses in the time domain, each with different central frequencies and independent sinusoidal frequency-modulated components. Then, the laser beams from the multi-central frequency laser sources transmit in the multi-color smoothing system, spatially separated and independently spectrally dispersed by gratings array, independently achieve the third harmonic generation in KDP array with independent phase-matching for efficient conversion. Moreover, by adjusting the dispersion direction of the gratings to be perpendicular to each other, it is an effective way to achieve a 2D beam smoothing effect on the focal plane. Simulation results show that the novel beam smoothing scheme performs better than the conventional SSD.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
    [CrossRef]
  2. P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broad-bandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76, 2027–2035 (1994).
    [CrossRef]
  3. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
    [CrossRef]
  4. C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47, 1465–1469 (2008).
    [CrossRef]
  5. K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, and T. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
    [CrossRef]
  6. D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995).
    [CrossRef]
  7. R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008).
    [CrossRef]
  8. T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
    [CrossRef]
  9. D. J. Kuizenga, Laser Program Annual Report-79, Lawrence Livermore National Laboratory, Livermore, California, (1980).
  10. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National ignition facility laser performance status,” Appl. Opt. 46, 3276—3303 (2007).
    [CrossRef]
  11. J. Xiao and B. Lü, “Characteristics of polarization control plate smoothing interference speckles,” Chinese J. Laser 27, 627–632 (2000) (in Chinese).
  12. Z. Liu, Y. Zhao, and D. Fan, “Improvement of the illumination uniformity in ICF using a random polarization control plate,” Opt. Commun. 152, 1–5 (1998).
    [CrossRef]

2012 (1)

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

2008 (2)

C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47, 1465–1469 (2008).
[CrossRef]

R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008).
[CrossRef]

2007 (1)

2000 (1)

J. Xiao and B. Lü, “Characteristics of polarization control plate smoothing interference speckles,” Chinese J. Laser 27, 627–632 (2000) (in Chinese).

1998 (1)

Z. Liu, Y. Zhao, and D. Fan, “Improvement of the illumination uniformity in ICF using a random polarization control plate,” Opt. Commun. 152, 1–5 (1998).
[CrossRef]

1995 (1)

D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995).
[CrossRef]

1994 (1)

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broad-bandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76, 2027–2035 (1994).
[CrossRef]

1992 (1)

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, and T. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

1989 (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

1984 (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Anderson, K. S.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Arinaga, S.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Auerbach, J. M.

Betti, R.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Bowers, M. W.

Collins, T. J. B.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Cotton, C. T.

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broad-bandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76, 2027–2035 (1994).
[CrossRef]

Craxton, R. S.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Delettrez, J. A.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Dixit, S. N.

Ehrlich, R. B.

D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995).
[CrossRef]

Eimerl, D.

D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995).
[CrossRef]

Erbert, G. V.

Fan, D.

Z. Liu, Y. Zhao, and D. Fan, “Improvement of the illumination uniformity in ICF using a random polarization control plate,” Opt. Commun. 152, 1–5 (1998).
[CrossRef]

Goncharov, V. N.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Harding, D. R.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Jancaitis, K. S.

Jia, H.

R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008).
[CrossRef]

Kanabe, T.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, and T. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Kato, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Kelly, J. H.

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broad-bandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76, 2027–2035 (1994).
[CrossRef]

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Kitagawa, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga, Laser Program Annual Report-79, Lawrence Livermore National Laboratory, Livermore, California, (1980).

Laumann, C. W.

D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995).
[CrossRef]

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Li, M.

R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008).
[CrossRef]

Lin, H.

R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008).
[CrossRef]

Liu, Z.

Z. Liu, Y. Zhao, and D. Fan, “Improvement of the illumination uniformity in ICF using a random polarization control plate,” Opt. Commun. 152, 1–5 (1998).
[CrossRef]

Lü, B.

J. Xiao and B. Lü, “Characteristics of polarization control plate smoothing interference speckles,” Chinese J. Laser 27, 627–632 (2000) (in Chinese).

Ma, P.

Manes, K. R.

Marozas, J. A.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Marshall, C. D.

Marshall, F. J.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

McCrory, R. L.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

McKenty, P. W.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broad-bandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76, 2027–2035 (1994).
[CrossRef]

Mehta, N. C.

Menapace, J.

Meyerhofer, D. D.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Miller, J. L.

D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995).
[CrossRef]

Mima, K.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Miyanaga, N.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Moses, E.

Murray, J. R.

Nakai, T.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, and T. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Nakano, H.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, and T. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Nakatsuka, M.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, and T. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Naktsuka, M.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Nostrand, M. C.

Orth, C. D.

Patterson, R.

Pennington, D. M.

D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995).
[CrossRef]

Radha, P. B.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Sacks, R. A.

Shaw, M. J.

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Shvydky, A.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Skupsky, S.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broad-bandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76, 2027–2035 (1994).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Spaeth, M.

Sui, Z.

R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008).
[CrossRef]

Sutton, S. B.

Tsubakimoto, K.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, and T. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Van Wonterghem, B. M.

Wang, J.

R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008).
[CrossRef]

Wegner, P. J.

Weiland, T. L.

D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995).
[CrossRef]

White, R. K.

Widmayer, C. C.

Wilcox, R. B.

D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995).
[CrossRef]

Williams, W. H.

Xiao, J.

J. Xiao and B. Lü, “Characteristics of polarization control plate smoothing interference speckles,” Chinese J. Laser 27, 627–632 (2000) (in Chinese).

Xu, Q.

Yamanka, C.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Yang, C.

Yang, S. T.

Zhang, R.

C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47, 1465–1469 (2008).
[CrossRef]

R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008).
[CrossRef]

Zhang, X.

R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008).
[CrossRef]

Zhao, Y.

Z. Liu, Y. Zhao, and D. Fan, “Improvement of the illumination uniformity in ICF using a random polarization control plate,” Opt. Commun. 152, 1–5 (1998).
[CrossRef]

Zuegel, J. D.

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Appl. Opt. (2)

Chinese J. Laser (1)

J. Xiao and B. Lü, “Characteristics of polarization control plate smoothing interference speckles,” Chinese J. Laser 27, 627–632 (2000) (in Chinese).

J. Appl. Phys. (2)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

P. W. McKenty, S. Skupsky, J. H. Kelly, and C. T. Cotton, “Numerical investigation of the self-focusing of broad-bandwidth laser light with the applied angular dispersion,” J. Appl. Phys. 76, 2027–2035 (1994).
[CrossRef]

Opt. Commun. (2)

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, and T. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Z. Liu, Y. Zhao, and D. Fan, “Improvement of the illumination uniformity in ICF using a random polarization control plate,” Opt. Commun. 152, 1–5 (1998).
[CrossRef]

Opt. Laser Technol. (1)

R. Zhang, X. Zhang, Z. Sui, J. Wang, H. Lin, M. Li, and H. Jia, “Research on beam smoothing characteristics using linearly modulated light,” Opt. Laser Technol. 40, 1018–1024 (2008).
[CrossRef]

Phys. Plasmas (1)

T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, and J. D. Zuegel, “A polar-drive–ignition design for the National Ignition Facility,” Phys. Plasmas 19, 056308 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Proc. SPIE (1)

D. M. Pennington, M. A. Henesian, R. B. Wilcox, T. L. Weiland, D. Eimerl, R. B. Ehrlich, C. W. Laumann, and J. L. Miller, “Four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL,” Proc. SPIE 2633, 228256 (1995).
[CrossRef]

Other (1)

D. J. Kuizenga, Laser Program Annual Report-79, Lawrence Livermore National Laboratory, Livermore, California, (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic illustration of the multi-central frequency laser source.

Fig. 2.
Fig. 2.

Schematic illustration of a multi-color beam smoothing system; a four-color beam smoothing system is given as an example.

Fig. 3.
Fig. 3.

Spectrum of laser sources: (a) the single frequency-modulated laser; (b) the MF-MC laser, where one color represents one multi-central frequency laser.

Fig. 4.
Fig. 4.

Schematic illustration of a multi-central frequency laser, (one quadrant) transmitting through CPP (one quadrant) and PS (one quadrant). CPP is designed for conventional SSD at 351 nm.

Fig. 5.
Fig. 5.

Intensity distribution using different smoothing schemes: (a) conventional 1D-SSD+CPP+PS; (b) MF-MC 1D-SSD+CPP+PS, the dispersion direction of gratings are the same (in x direction); (c) conventional 2D-SSD+CPP+PS, with spectral dispersion in the x and y directions; (d) MF-MC 2D-SSD+CPP+PS, the dispersion direction of gratings are perpendicular to each other.

Fig. 6.
Fig. 6.

Calculated smoothing effect: (a) contrast C plotted as a function of integration time for the four smoothing scheme; (b) FOPAI curves of the focal spot, at integral time Δt=10ps. Curve 1 represents 1D-SSD+CPP+PS, curve 2 represents MF-MC SSD+CPP+PS (with the dispersion direction of the gratings the same), and curve 3 represents 2D-SSD+CPP+PS, curve 4 represents MF-MC 2D-SSD+CPP+PS (the dispersion direction of the gratings are perpendicular to each other).

Fig. 7.
Fig. 7.

(a) Intensity distribution of MF-MC 2D-SSD+CPP+PCP, C=0.465; (b) FOPAI curves, where curve I represents MF-MC 2D-SSD+CPP+PS, and curve II represents MF-MC 2D-SSD+CPP+PCP.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Emn(t)=A(t)exp[i(ω0mnt+δmnsinωmnt)],
Emnx(xm,ym,t)=A(xm,ym,t)eiω0mnt+iδmnsin[ωmn(tz/c)+ξmxm],
Emnx(xm,ym,t)=A(xm,ym,t)eiΦCPPeiω0mnt+iδmnsin[ωmn(tz/c)+ξmxm],
Ix(xf,yf,t)=mn|ex×spaceEmnx(xm,ym,t)exp[i2πλf(xfxm+yfym)]dxmdym|2+mn|ey×spaceEmnx(xm,ym,t)exp[i2πλf(xfxm+yfym)]dxmdym|2,
C=ij[Ii,j(x,y)I¯(x,y)]2/NxNy/I¯(x,y),
FOPAI(I0)=AwhereI(x,y)>I0(x,y)dxdyAI(x,y)dxdy.

Metrics