Abstract

Electromagnetic metamaterials, made from arrangements of subwavelength-sized structures, can be used to manipulate radiation. Designing metamaterials that have a positive refractive index along one axis and a negative refractive index along the orthogonal axis can result in birefringences, Δn>1. The effect can be used to create wave plates with subwavelength thicknesses. Previous attempts at making wave plates in this way have resulted in very narrow usable bandwidths. In this paper, we use the Pancharatnam method to increase the usable bandwidth. A combination of finite element method and transmission line models was used to optimize the final design. Experimental results are compared with the modeled data.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  3. P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
    [CrossRef]
  4. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Indian Acad. Sci. A 41, 130–136 (1955).
  5. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A 41, 137–144 (1955).
  6. M. N. Afsar, “Precision millimeter-wave dielectric measurements of birefringent crystalline sapphire and ceramic alumina,” IEEE Trans. Instrum. Meas. IM-36, 554–559 (1987).
    [CrossRef]
  7. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
    [CrossRef]
  8. A. G. Murray, R. Nartallo, C. V. Haynes, F. Gannaway, and P. a. R. Ade, “An imaging polarimeter for SCUBA,” in Proceedings of the ESA Symposium: The Far Infrared and Submillimetre UniverseA. Wilson, ed. (European Space Agency, 1997), pp. 405–408.
  9. G. Pisano, S. Melhuish, G. Savini, L. Piccirillo, and B. Maffei, “A broadband W-band polarization rotator with very low cross polarization,” IEEE Microw. Wirel. Compon. Lett. 21, 127–129 (2011).
    [CrossRef]
  10. http://www.ansys.com/Products/Simulation+Technology/Electromagnetics/Signal+Integrity/ANSYS+HFSS
  11. J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103 (2006).
    [CrossRef]
  12. N. Marcuvitz, ed., Waveguide Handbook, Vol. 10 of Massachusetts Institute of Technology Radiation Laboratory (Dover, 1965).
  13. D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).
  14. G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarization rotation,” Progress Electromagn. Res. M 25, 101–114 (2012).
  15. S. Adachi and E. M. Kennaugh, “The analysis of a broad-band circular polarizer including interface reflections,” IEEE Trans. Microwave Theor. Tech. 8, 520–525 (1960).
    [CrossRef]
  16. G. Savini, G. Pisano, and P. A. R. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
    [CrossRef]
  17. K. B. Alici and E. Ozbay, “Direct observation of negative refraction at the millimeter-wave regime by using a flat composite metamaterial,” J. Opt. Soc. Am. B 26, 1688–1692 (2009).
    [CrossRef]
  18. G. Pisano, P. A. R. Ade, and S. Weaver, “Polarisation effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89–100 (2006).
    [CrossRef]
  19. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
    [CrossRef]

2012 (1)

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarization rotation,” Progress Electromagn. Res. M 25, 101–114 (2012).

2011 (1)

G. Pisano, S. Melhuish, G. Savini, L. Piccirillo, and B. Maffei, “A broadband W-band polarization rotator with very low cross polarization,” IEEE Microw. Wirel. Compon. Lett. 21, 127–129 (2011).
[CrossRef]

2009 (2)

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

K. B. Alici and E. Ozbay, “Direct observation of negative refraction at the millimeter-wave regime by using a flat composite metamaterial,” J. Opt. Soc. Am. B 26, 1688–1692 (2009).
[CrossRef]

2006 (3)

G. Savini, G. Pisano, and P. A. R. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
[CrossRef]

G. Pisano, P. A. R. Ade, and S. Weaver, “Polarisation effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89–100 (2006).
[CrossRef]

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103 (2006).
[CrossRef]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

1996 (1)

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

1987 (1)

M. N. Afsar, “Precision millimeter-wave dielectric measurements of birefringent crystalline sapphire and ceramic alumina,” IEEE Trans. Instrum. Meas. IM-36, 554–559 (1987).
[CrossRef]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

1960 (1)

S. Adachi and E. M. Kennaugh, “The analysis of a broad-band circular polarizer including interface reflections,” IEEE Trans. Microwave Theor. Tech. 8, 520–525 (1960).
[CrossRef]

1955 (2)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Indian Acad. Sci. A 41, 130–136 (1955).

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A 41, 137–144 (1955).

Adachi, S.

S. Adachi and E. M. Kennaugh, “The analysis of a broad-band circular polarizer including interface reflections,” IEEE Trans. Microwave Theor. Tech. 8, 520–525 (1960).
[CrossRef]

Ade, P. A. R.

G. Pisano, P. A. R. Ade, and S. Weaver, “Polarisation effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89–100 (2006).
[CrossRef]

G. Savini, G. Pisano, and P. A. R. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
[CrossRef]

A. G. Murray, R. Nartallo, C. V. Haynes, F. Gannaway, and P. a. R. Ade, “An imaging polarimeter for SCUBA,” in Proceedings of the ESA Symposium: The Far Infrared and Submillimetre UniverseA. Wilson, ed. (European Space Agency, 1997), pp. 405–408.

Afsar, M. N.

M. N. Afsar, “Precision millimeter-wave dielectric measurements of birefringent crystalline sapphire and ceramic alumina,” IEEE Trans. Instrum. Meas. IM-36, 554–559 (1987).
[CrossRef]

Alici, K. B.

Beigang, R.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Gannaway, F.

A. G. Murray, R. Nartallo, C. V. Haynes, F. Gannaway, and P. a. R. Ade, “An imaging polarimeter for SCUBA,” in Proceedings of the ESA Symposium: The Far Infrared and Submillimetre UniverseA. Wilson, ed. (European Space Agency, 1997), pp. 405–408.

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Haynes, C. V.

A. G. Murray, R. Nartallo, C. V. Haynes, F. Gannaway, and P. a. R. Ade, “An imaging polarimeter for SCUBA,” in Proceedings of the ESA Symposium: The Far Infrared and Submillimetre UniverseA. Wilson, ed. (European Space Agency, 1997), pp. 405–408.

Haynes, V.

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarization rotation,” Progress Electromagn. Res. M 25, 101–114 (2012).

Imhof, C.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Kennaugh, E. M.

S. Adachi and E. M. Kennaugh, “The analysis of a broad-band circular polarizer including interface reflections,” IEEE Trans. Microwave Theor. Tech. 8, 520–525 (1960).
[CrossRef]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Koschny, T.

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103 (2006).
[CrossRef]

Lamb, J. W.

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

Maffei, B.

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarization rotation,” Progress Electromagn. Res. M 25, 101–114 (2012).

G. Pisano, S. Melhuish, G. Savini, L. Piccirillo, and B. Maffei, “A broadband W-band polarization rotator with very low cross polarization,” IEEE Microw. Wirel. Compon. Lett. 21, 127–129 (2011).
[CrossRef]

Melhuish, S.

G. Pisano, S. Melhuish, G. Savini, L. Piccirillo, and B. Maffei, “A broadband W-band polarization rotator with very low cross polarization,” IEEE Microw. Wirel. Compon. Lett. 21, 127–129 (2011).
[CrossRef]

Murray, A. G.

A. G. Murray, R. Nartallo, C. V. Haynes, F. Gannaway, and P. a. R. Ade, “An imaging polarimeter for SCUBA,” in Proceedings of the ESA Symposium: The Far Infrared and Submillimetre UniverseA. Wilson, ed. (European Space Agency, 1997), pp. 405–408.

Nartallo, R.

A. G. Murray, R. Nartallo, C. V. Haynes, F. Gannaway, and P. a. R. Ade, “An imaging polarimeter for SCUBA,” in Proceedings of the ESA Symposium: The Far Infrared and Submillimetre UniverseA. Wilson, ed. (European Space Agency, 1997), pp. 405–408.

Ng, M. W.

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarization rotation,” Progress Electromagn. Res. M 25, 101–114 (2012).

Ozbay, E.

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A 41, 137–144 (1955).

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Indian Acad. Sci. A 41, 130–136 (1955).

Paul, O.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Piccirillo, L.

G. Pisano, S. Melhuish, G. Savini, L. Piccirillo, and B. Maffei, “A broadband W-band polarization rotator with very low cross polarization,” IEEE Microw. Wirel. Compon. Lett. 21, 127–129 (2011).
[CrossRef]

Pisano, G.

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarization rotation,” Progress Electromagn. Res. M 25, 101–114 (2012).

G. Pisano, S. Melhuish, G. Savini, L. Piccirillo, and B. Maffei, “A broadband W-band polarization rotator with very low cross polarization,” IEEE Microw. Wirel. Compon. Lett. 21, 127–129 (2011).
[CrossRef]

G. Pisano, P. A. R. Ade, and S. Weaver, “Polarisation effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89–100 (2006).
[CrossRef]

G. Savini, G. Pisano, and P. A. R. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
[CrossRef]

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).

Rahm, M.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Savini, G.

G. Pisano, S. Melhuish, G. Savini, L. Piccirillo, and B. Maffei, “A broadband W-band polarization rotator with very low cross polarization,” IEEE Microw. Wirel. Compon. Lett. 21, 127–129 (2011).
[CrossRef]

G. Savini, G. Pisano, and P. A. R. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006).
[CrossRef]

Soukoulis, C. M.

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103 (2006).
[CrossRef]

Tuttle, G.

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103 (2006).
[CrossRef]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

Weaver, S.

G. Pisano, P. A. R. Ade, and S. Weaver, “Polarisation effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89–100 (2006).
[CrossRef]

Weis, P.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Zhang, L.

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103 (2006).
[CrossRef]

Zhou, J.

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221103 (2006).
[CrossRef]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

G. Pisano, S. Melhuish, G. Savini, L. Piccirillo, and B. Maffei, “A broadband W-band polarization rotator with very low cross polarization,” IEEE Microw. Wirel. Compon. Lett. 21, 127–129 (2011).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. N. Afsar, “Precision millimeter-wave dielectric measurements of birefringent crystalline sapphire and ceramic alumina,” IEEE Trans. Instrum. Meas. IM-36, 554–559 (1987).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

S. Adachi and E. M. Kennaugh, “The analysis of a broad-band circular polarizer including interface reflections,” IEEE Trans. Microwave Theor. Tech. 8, 520–525 (1960).
[CrossRef]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

Infrared Phys. Technol. (1)

G. Pisano, P. A. R. Ade, and S. Weaver, “Polarisation effects investigations in quasi-optical metal grid filters,” Infrared Phys. Technol. 48, 89–100 (2006).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys. Rev. E (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

Proc. Indian Acad. Sci. A (2)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Indian Acad. Sci. A 41, 130–136 (1955).

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A 41, 137–144 (1955).

Progress Electromagn. Res. M (1)

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarization rotation,” Progress Electromagn. Res. M 25, 101–114 (2012).

Other (4)

N. Marcuvitz, ed., Waveguide Handbook, Vol. 10 of Massachusetts Institute of Technology Radiation Laboratory (Dover, 1965).

D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).

A. G. Murray, R. Nartallo, C. V. Haynes, F. Gannaway, and P. a. R. Ade, “An imaging polarimeter for SCUBA,” in Proceedings of the ESA Symposium: The Far Infrared and Submillimetre UniverseA. Wilson, ed. (European Space Agency, 1997), pp. 405–408.

http://www.ansys.com/Products/Simulation+Technology/Electromagnetics/Signal+Integrity/ANSYS+HFSS

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic showing the setup of three wave plates in a Pancharatnam configuration used in this work. The optic axis of each wave plate is rotated by differing angles.

Fig. 2.
Fig. 2.

(a) Front view and (b) side view of the DBT unit cell. The copper parts are represented by orange, and the polypropylene substrate is colored light blue. The dimensions are as follows: h=300μm; w=556μm; l=591μm; and t=264μm. The thickness of the copper is 2 μm.

Fig. 3.
Fig. 3.

Schematic of experimental setup used for the transmission readings. The VNA heads are aligned off-axis to one another while keeping the line that joins the centers of the two heads perpendicular to the HWP.

Fig. 4.
Fig. 4.

FEM simulated (dashed) and VNA measured (solid) transmitted phase difference of the individual DBT HWPs.

Fig. 5.
Fig. 5.

FEM simulated (dashed) and VNA measured (solid) transmitted intensity along the x axis of the individual DBT HWPs.

Fig. 6.
Fig. 6.

FEM simulated (dashed) and VNA measured (solid) transmitted intensity along the y axis of the individual DBT HWPs.

Fig. 7.
Fig. 7.

Refractive indices, nx and ny, of the x- and y-polarized radiation calculated from FEM simulation data of the DBT.

Fig. 8.
Fig. 8.

TL modeled (dashed) and VNA measured (solid) transmitted phase difference of the Pancharatnam-based HWP.

Fig. 9.
Fig. 9.

TL modeled (dashed) and VNA measured (solid) transmitted intensity of the Pancharatnam-based HWP along its x axis.

Fig. 10.
Fig. 10.

TL modeled (dashed) and VNA measured (solid) transmitted intensity of the Pancharatnam-based HWP along its y axis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=2πfdc0Δn,

Metrics