Abstract

A 1011 nm pulsed Yb3+-doped fiber laser is experimentally demonstrated by employing a commercially available LiNbO3 phase modulator (PM) in the linear cavity. The resonator is built up with a section of normal single-cladding Yb3+-doped fiber, a PM, and a pair of fiber Bragg gratings. Active mode-locked stable trains of pulses with 2 and 1.4 ns are generated at repetition rates of 30.2478 and 60.4956 MHz, respectively. The maximum average output power is 10.6 mW at pump power of 200 mW, with the slope efficiency of 13.3%. Relaxation-oscillation-modulated pulses with width of 2 μs are obtained at a repetition rate of 27.778 kHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. T. Case, D. Tan, R. E. Stickel, and J. Mastromarino, “Narrow-linewidth, tunable ultraviolet, Ti:sapphire laser for environmental sensing,” Appl. Opt. 45, 2306–2309 (2006).
    [CrossRef]
  2. L. Yi, S. Mejri, J. J. MeFerran, Y. LeCoq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett. 106, 073005 (2011).
    [CrossRef]
  3. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005).
    [CrossRef]
  4. P. Villwoek, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65, 251–255 (2011).
    [CrossRef]
  5. R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz, “A continuous wave 10  W cryogenic fiber amplifier at 1015  nm and frequency quadrupling to 254  nm,” Opt. Express 21, 22693–22698 (2013).
    [CrossRef]
  6. A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4, 93–102 (2007).
    [CrossRef]
  7. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  8. A. Seifert, M. Sinther, T. Walther, and E. S. Fry, “Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8  nm,” Appl. Opt. 45, 7908–7911 (2006).
    [CrossRef]
  9. S. Mo, S. Xu, X. Huang, W. Zhang, Z. Feng, D. Chen, T. Yang, and Z. Yang, “A 1014  nm linearly polarized low noise narrow-linewidth single-frequency fiber laser,” Opt. Express 21, 12419–12423 (2013).
    [CrossRef]
  10. H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018  nm high-power ytterbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 24, 1088–1090 (2012).
    [CrossRef]
  11. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
    [CrossRef]
  12. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
    [CrossRef]
  13. A. E. Siegman, Lasers (University Science Books, 1986), p. 1060.
  14. R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
    [CrossRef]
  15. D. Östling, G. Sinha, and H. E. Engan, “Spectral stability and smoothness of a phase-modulated fiber laser,” Opt. Lett. 20, 219–221 (1995).
    [CrossRef]
  16. X. Wang, P. Zhou, X. Wang, R. Tao, and L. Si, “2  μs Tm-doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating,” IEEE Photon. J. 5, 1502206 (2013).
    [CrossRef]

2013 (3)

2012 (1)

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018  nm high-power ytterbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 24, 1088–1090 (2012).
[CrossRef]

2011 (2)

L. Yi, S. Mejri, J. J. MeFerran, Y. LeCoq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett. 106, 073005 (2011).
[CrossRef]

P. Villwoek, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65, 251–255 (2011).
[CrossRef]

2010 (2)

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[CrossRef]

2009 (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

2007 (1)

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4, 93–102 (2007).
[CrossRef]

2006 (2)

2005 (1)

1995 (1)

1994 (1)

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef]

Bachor, P.

Bae, M. K.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

Bize, S.

L. Yi, S. Mejri, J. J. MeFerran, Y. LeCoq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett. 106, 073005 (2011).
[CrossRef]

Bonaccorso, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Case, A. T.

Chen, D.

Clarkson, W. A.

Diehl, T.

Engan, H. E.

Feng, Z.

Ferrari, A. C.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Fry, E. S.

Guo, S.

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018  nm high-power ytterbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 24, 1088–1090 (2012).
[CrossRef]

Han, W. S.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

Hasan, T.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Huang, X.

Jang, S. Y.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

Kappe, P.

Koglbauer, A.

Kolbe, D.

Kurkov, A. S.

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4, 93–102 (2007).
[CrossRef]

LeCoq, Y.

L. Yi, S. Mejri, J. J. MeFerran, Y. LeCoq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett. 106, 073005 (2011).
[CrossRef]

Mastromarino, J.

MeFerran, J. J.

L. Yi, S. Mejri, J. J. MeFerran, Y. LeCoq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett. 106, 073005 (2011).
[CrossRef]

Mejri, S.

L. Yi, S. Mejri, J. J. MeFerran, Y. LeCoq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett. 106, 073005 (2011).
[CrossRef]

Menzel, R.

Mo, S.

Nilsson, J.

Ostermeyer, M.

Östling, D.

Richardson, D. J.

Roy, R.

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef]

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Seifert, A.

Si, L.

X. Wang, P. Zhou, X. Wang, R. Tao, and L. Si, “2  μs Tm-doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating,” IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986), p. 1060.

Sinha, G.

Sinther, M.

Siol, S.

P. Villwoek, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65, 251–255 (2011).
[CrossRef]

Song, Y. W.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

Stappel, M.

Steinborn, R.

Stickel, R. E.

Sun, Z.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Tan, D.

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Tao, R.

X. Wang, P. Zhou, X. Wang, R. Tao, and L. Si, “2  μs Tm-doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating,” IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

Thornburg, K. S.

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef]

Villwoek, P.

P. Villwoek, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65, 251–255 (2011).
[CrossRef]

Walther, T.

P. Villwoek, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65, 251–255 (2011).
[CrossRef]

A. Seifert, M. Sinther, T. Walther, and E. S. Fry, “Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8  nm,” Appl. Opt. 45, 7908–7911 (2006).
[CrossRef]

Walz, J.

Wang, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Wang, X.

X. Wang, P. Zhou, X. Wang, R. Tao, and L. Si, “2  μs Tm-doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating,” IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

X. Wang, P. Zhou, X. Wang, R. Tao, and L. Si, “2  μs Tm-doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating,” IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018  nm high-power ytterbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 24, 1088–1090 (2012).
[CrossRef]

Wulfmeyer, V.

Xiao, H.

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018  nm high-power ytterbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 24, 1088–1090 (2012).
[CrossRef]

Xu, S.

Xu, X.

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018  nm high-power ytterbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 24, 1088–1090 (2012).
[CrossRef]

Yang, T.

Yang, Z.

Yi, L.

L. Yi, S. Mejri, J. J. MeFerran, Y. LeCoq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett. 106, 073005 (2011).
[CrossRef]

Zhang, W.

Zhou, P.

X. Wang, P. Zhou, X. Wang, R. Tao, and L. Si, “2  μs Tm-doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating,” IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018  nm high-power ytterbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 24, 1088–1090 (2012).
[CrossRef]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[CrossRef]

Eur. Phys. J. D (1)

P. Villwoek, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65, 251–255 (2011).
[CrossRef]

IEEE Photon. J. (1)

X. Wang, P. Zhou, X. Wang, R. Tao, and L. Si, “2  μs Tm-doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating,” IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018  nm high-power ytterbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 24, 1088–1090 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4, 93–102 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

R. Roy and K. S. Thornburg, “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009–2012 (1994).
[CrossRef]

L. Yi, S. Mejri, J. J. MeFerran, Y. LeCoq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett. 106, 073005 (2011).
[CrossRef]

Other (1)

A. E. Siegman, Lasers (University Science Books, 1986), p. 1060.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Brief schematic diagram of the pulsed fiber laser.

Fig. 2.
Fig. 2.

(a) Oscilloscope trace of the mode-locked pulse train at 30.2478 MHz repetition rate. (b) Single pulse shape with 2 ns pulsewidth.

Fig. 3.
Fig. 3.

(a) Oscilloscope trace of the mode-locked pulse train at 60.4956 MHz repetition rate. (b) Single pulse shape with 1.4 ns pulsewidth.

Fig. 4.
Fig. 4.

Average laser power versus average pump power operated at 30.2478 MHz. Inset shows the emission spectrum at maximum pump power.

Fig. 5.
Fig. 5.

(a) Oscilloscope trace of the pulse train at 27.778 kHz repetition rate. (b) Single pulse shape with 2 μs pulsewidth.

Metrics