M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).

[CrossRef]

F. M. Davidson, G. C. Gilbreath, and E. Oh, “Measurements of intensity scintillations and probability density functions of retroreflected broadband 980-nm laser light in atmospheric turbulence,” Opt. Eng. 43, 2689–2695 (2004).

[CrossRef]

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).

[CrossRef]

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–77 (1967).

[CrossRef]

A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” in Eighth Joint International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics (International Society for Optics and Photonics, 2002), pp. 91–101.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).

[CrossRef]

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).

[CrossRef]

C. R. Ambrose, Strehl Ratio Probabilities for Phase-Only Adaptive Optics (Naval Postgraduate School, 1999).

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).

[CrossRef]

L. C. Andrews and R. L. Phillips, “Mathematical genesis of the IK distribution for random optical fields,” J. Opt. Soc. Am. A 3, 1912–1919 (1986).

[CrossRef]

L. C. Andrews and R. L. Phillips, “IK distribution as a universal propagation model of laser beams in atmospheric turbulence,” J. Opt. Soc. Am. A 2, 160–163 (1985).

[CrossRef]

R. L. Phillips and L. C. Andrews, “Universal statistical model for irradiance fluctuations in a turbulent medium,” J. Opt. Soc. Am. 72, 864–870 (1982).

[CrossRef]

A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” in Eighth Joint International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics (International Society for Optics and Photonics, 2002), pp. 91–101.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).

[CrossRef]

S. M. Flatté, C. Bracher, and G.-Y. Wang, “Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,” J. Opt. Soc. Am. A 11, 2080–2092 (1994).

[CrossRef]

R. Dashen, G.-Y. Wang, S. M. Flatte, and C. Bracher, “Moments of intensity and log intensity: new asymptotic results for waves in power-law media,” J. Opt. Soc. Am. A 10, 1233–1242 (1993).

[CrossRef]

S. Gladyszab, J. C. Christoua, and M. Redfernb, “Characterization of the Lick adaptive optics point spread function,” Proc. SPIE 6272, 62720J (2006).

[CrossRef]

J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30, 1982–1994 (1991).

[CrossRef]

J. H. Churnside and R. G. Frehlich, “Experimental evaluation of log-normally modulated Rician and IK models of optical scintillation in the atmosphere,” J. Opt. Soc. Am. A 6, 1760–1766 (1989).

[CrossRef]

J. H. Churnside and R. J. Hill, “Probability density of irradiance scintillations for strong path-integrated refractive turbulence,” J. Opt. Soc. Am. A 4, 727–733 (1987).

[CrossRef]

J. H. Churnside and S. F. Clifford, “Log-normal Rician probability-density function of optical scintillations in the turbulent atmosphere,” J. Opt. Soc. Am. A 4, 1923–1930 (1987).

[CrossRef]

F. M. Davidson, G. C. Gilbreath, and E. Oh, “Measurements of intensity scintillations and probability density functions of retroreflected broadband 980-nm laser light in atmospheric turbulence,” Opt. Eng. 43, 2689–2695 (2004).

[CrossRef]

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).

[CrossRef]

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).

[CrossRef]

F. M. Davidson, G. C. Gilbreath, and E. Oh, “Measurements of intensity scintillations and probability density functions of retroreflected broadband 980-nm laser light in atmospheric turbulence,” Opt. Eng. 43, 2689–2695 (2004).

[CrossRef]

S. Gladyszab, J. C. Christoua, and M. Redfernb, “Characterization of the Lick adaptive optics point spread function,” Proc. SPIE 6272, 62720J (2006).

[CrossRef]

L. E. Goad, “Performance scaling laws for adaptive optics systems,” Proc. SPIE 1920, 2–8 (1993).

[CrossRef]

K. Kiasaleh, “On the probability density function of signal intensity in free-space optical communications systems impaired by pointing jitter and turbulence,” Opt. Eng. 33, 3748–3757 (1994).

[CrossRef]

F. M. Davidson, G. C. Gilbreath, and E. Oh, “Measurements of intensity scintillations and probability density functions of retroreflected broadband 980-nm laser light in atmospheric turbulence,” Opt. Eng. 43, 2689–2695 (2004).

[CrossRef]

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).

[CrossRef]

L. C. Andrews and R. L. Phillips, “Mathematical genesis of the IK distribution for random optical fields,” J. Opt. Soc. Am. A 3, 1912–1919 (1986).

[CrossRef]

L. C. Andrews and R. L. Phillips, “IK distribution as a universal propagation model of laser beams in atmospheric turbulence,” J. Opt. Soc. Am. A 2, 160–163 (1985).

[CrossRef]

R. L. Phillips and L. C. Andrews, “Universal statistical model for irradiance fluctuations in a turbulent medium,” J. Opt. Soc. Am. 72, 864–870 (1982).

[CrossRef]

A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” in Eighth Joint International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics (International Society for Optics and Photonics, 2002), pp. 91–101.

S. Gladyszab, J. C. Christoua, and M. Redfernb, “Characterization of the Lick adaptive optics point spread function,” Proc. SPIE 6272, 62720J (2006).

[CrossRef]

R. J. Sasiela, Electromagnetic Wave Propagation in Turbulence: Evaluation and Application of Mellin Transforms (SPIE, 2007).

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).

[CrossRef]

V. I. Tatarskii, “The effects of the turbulent atmosphere on wave propagation,” Jerusalem: Israel Program for Scientific Translations1 (1971).

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).

[CrossRef]

S. M. Flatté, C. Bracher, and G.-Y. Wang, “Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,” J. Opt. Soc. Am. A 11, 2080–2092 (1994).

[CrossRef]

R. Dashen, G.-Y. Wang, S. M. Flatte, and C. Bracher, “Moments of intensity and log intensity: new asymptotic results for waves in power-law media,” J. Opt. Soc. Am. A 10, 1233–1242 (1993).

[CrossRef]

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).

[CrossRef]

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).

[CrossRef]

J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30, 1982–1994 (1991).

[CrossRef]

F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt. 46, 2099–2108 (2007).

[CrossRef]

S. D. Lyke, D. G. Voelz, and M. C. Roggemann, “Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links,” Appl. Opt. 48, 6511–6527 (2009).

[CrossRef]

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. García-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).

[CrossRef]

R. Dashen, G.-Y. Wang, S. M. Flatte, and C. Bracher, “Moments of intensity and log intensity: new asymptotic results for waves in power-law media,” J. Opt. Soc. Am. A 10, 1233–1242 (1993).

[CrossRef]

G. A. Tyler, “Assessment of the statistics of the Strehl ratio: predictions of central limit theorem analysis,” J. Opt. Soc. Am. A 23, 2834–2844 (2006).

[CrossRef]

N. Yaitskova and S. Gladysz, “First-order speckle statistics for arbitrary aberration strength,” J. Opt. Soc. Am. A 28, 1909–1919 (2011).

[CrossRef]

S. M. Flatté, C. Bracher, and G.-Y. Wang, “Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,” J. Opt. Soc. Am. A 11, 2080–2092 (1994).

[CrossRef]

H. T. Yura and D. L. Fried, “Variance of the Strehl ratio of an adaptive optics system,” J. Opt. Soc. Am. A 15, 2107–2110 (1998).

[CrossRef]

R. J. Hill and R. G. Frehlich, “Probability distribution of irradiance for the onset of strong scintillation,” J. Opt. Soc. Am. A 14, 1530–1540 (1997).

[CrossRef]

L. C. Andrews and R. L. Phillips, “IK distribution as a universal propagation model of laser beams in atmospheric turbulence,” J. Opt. Soc. Am. A 2, 160–163 (1985).

[CrossRef]

L. C. Andrews and R. L. Phillips, “Mathematical genesis of the IK distribution for random optical fields,” J. Opt. Soc. Am. A 3, 1912–1919 (1986).

[CrossRef]

J. H. Churnside and R. J. Hill, “Probability density of irradiance scintillations for strong path-integrated refractive turbulence,” J. Opt. Soc. Am. A 4, 727–733 (1987).

[CrossRef]

J. H. Churnside and S. F. Clifford, “Log-normal Rician probability-density function of optical scintillations in the turbulent atmosphere,” J. Opt. Soc. Am. A 4, 1923–1930 (1987).

[CrossRef]

M. C. Teich and P. Diament, “Multiply stochastic representations for K distributions and their Poisson transforms,” J. Opt. Soc. Am. A 6, 80–91 (1989).

[CrossRef]

J. H. Churnside and R. G. Frehlich, “Experimental evaluation of log-normally modulated Rician and IK models of optical scintillation in the atmosphere,” J. Opt. Soc. Am. A 6, 1760–1766 (1989).

[CrossRef]

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).

[CrossRef]

F. M. Davidson, G. C. Gilbreath, and E. Oh, “Measurements of intensity scintillations and probability density functions of retroreflected broadband 980-nm laser light in atmospheric turbulence,” Opt. Eng. 43, 2689–2695 (2004).

[CrossRef]

K. Kiasaleh, “On the probability density function of signal intensity in free-space optical communications systems impaired by pointing jitter and turbulence,” Opt. Eng. 33, 3748–3757 (1994).

[CrossRef]

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–77 (1967).

[CrossRef]

L. E. Goad, “Performance scaling laws for adaptive optics systems,” Proc. SPIE 1920, 2–8 (1993).

[CrossRef]

S. Gladyszab, J. C. Christoua, and M. Redfernb, “Characterization of the Lick adaptive optics point spread function,” Proc. SPIE 6272, 62720J (2006).

[CrossRef]

C. R. Ambrose, Strehl Ratio Probabilities for Phase-Only Adaptive Optics (Naval Postgraduate School, 1999).

A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” in Eighth Joint International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics (International Society for Optics and Photonics, 2002), pp. 91–101.

V. I. Tatarskii, “The effects of the turbulent atmosphere on wave propagation,” Jerusalem: Israel Program for Scientific Translations1 (1971).

R. J. Sasiela, Electromagnetic Wave Propagation in Turbulence: Evaluation and Application of Mellin Transforms (SPIE, 2007).