Abstract

Spectral splitting is numerically investigated in a metal-insulator-metal plasmonic waveguide coupled with a series of disk cavities for the first time to our best knowledge. The finite-difference time-domain simulations find that, when an identical cavity is introduced into the single-cavity-coupled structure, a resonance peak emerges in reflection dip due to the plasmonic analogue of electromagnetically induced transparency. By cascading multiple cavities into the waveguide system, the resonance spectra are gradually split because of the phase-coupled effects. Particularly, the quality factors of splitting resonance spectra can be rapidly improved with increasing the number of coupled cavities. The proposed plasmonic systems may find potential applications in highly integrated optical circuits, especially for multichannel filtering, all-optical switching, and slow-light devices.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Coupled-resonator-induced reflection in photonic-crystal waveguide structures

Sergei F. Mingaleev, Andrey E. Miroshnichenko, and Yuri S. Kivshar
Opt. Express 16(15) 11647-11659 (2008)

Electromagnetically induced transparency in hybrid plasmonic-dielectric system

Bin Tang, Lei Dai, and Chun Jiang
Opt. Express 19(2) 628-637 (2011)

Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices

Zhanghua Han and Sergey I. Bozhevolnyi
Opt. Express 19(4) 3251-3257 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (3)

» Media 1: MOV (1087 KB)     
» Media 2: MOV (1259 KB)     
» Media 3: MOV (1799 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription