Abstract

A macro-filter-lens design that can correct for chromatic and geometric aberrations simultaneously while providing for a long focal length is presented. The filter is easy to fabricate since it involves two spherical surfaces and a planar surface. Chromatic aberration correction is achieved by making all the rays travel the same optical distance inside the filter element (negative meniscus). Geometric aberration is corrected for by the lens element (plano–convex), which makes the output rays parallel to the optic axis. This macro-filter-lens design does not need additional macro lenses and it provides an inexpensive and optically good (aberration compensated) solution for macro imaging of objects not placed close to the camera.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “How complicated must an optical component be?,” J. Opt. Soc. Am. A 30, 238–251 (2013).
    [CrossRef]
  2. S. Pal, “Aberration correction of zoom lenses using evolutionary programming,” Appl. Opt. 52, 5724–5732 (2013).
    [CrossRef]
  3. Y.-H. Lin, J.-Y. Lai, H.-Y. Tsai, H.-C. Chang, H. Huang, Y.-F. Chen, and K.-C. Huang, “Optical imaging with spectrum aberration correction using a filtering macrolens,” Appl. Opt. 52, 5058–5064 (2013).
    [CrossRef]
  4. D. Skoog, F. Holler, and S. Crouch, Principles of Instrumental Analysis (Brooks/Cole, 2007).
  5. R. B. Tagirov and L. P. Tagirov, “Lambert formula—Bouguer absorption law?” Russ. Phys. J. 40, 664–669 (1997).
    [CrossRef]
  6. A. Ryer, Light Measurement Handbook (International Light, 1997).
  7. S. K. Dew and R. R. Parsons, “Absorbing filter to flatten Gaussian beams,” Appl. Opt. 31, 3416–3419 (1992).
    [CrossRef]
  8. Schott, “Longpass filters,” http://www.schott.com/advanced_optics/english/products/filteroverviewdetaillongpass.html (accessed on 7 December 2013).
  9. Schott., “B 270 i ultra-white glass,” http://www.schott.com/advanced_optics/english/syn/advanced_optics/products/optical-materials/thin-glass/flat-glass-b-270/index.html (accessed on 7 December 2013).

2013 (3)

1997 (1)

R. B. Tagirov and L. P. Tagirov, “Lambert formula—Bouguer absorption law?” Russ. Phys. J. 40, 664–669 (1997).
[CrossRef]

1992 (1)

Chang, H.-C.

Chen, Y.-F.

Crouch, S.

D. Skoog, F. Holler, and S. Crouch, Principles of Instrumental Analysis (Brooks/Cole, 2007).

Dew, S. K.

Holler, F.

D. Skoog, F. Holler, and S. Crouch, Principles of Instrumental Analysis (Brooks/Cole, 2007).

Huang, H.

Huang, K.-C.

Lai, J.-Y.

Lin, Y.-H.

Miller, D. A. B.

Pal, S.

Parsons, R. R.

Ryer, A.

A. Ryer, Light Measurement Handbook (International Light, 1997).

Skoog, D.

D. Skoog, F. Holler, and S. Crouch, Principles of Instrumental Analysis (Brooks/Cole, 2007).

Tagirov, L. P.

R. B. Tagirov and L. P. Tagirov, “Lambert formula—Bouguer absorption law?” Russ. Phys. J. 40, 664–669 (1997).
[CrossRef]

Tagirov, R. B.

R. B. Tagirov and L. P. Tagirov, “Lambert formula—Bouguer absorption law?” Russ. Phys. J. 40, 664–669 (1997).
[CrossRef]

Tsai, H.-Y.

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

Russ. Phys. J. (1)

R. B. Tagirov and L. P. Tagirov, “Lambert formula—Bouguer absorption law?” Russ. Phys. J. 40, 664–669 (1997).
[CrossRef]

Other (4)

A. Ryer, Light Measurement Handbook (International Light, 1997).

Schott, “Longpass filters,” http://www.schott.com/advanced_optics/english/products/filteroverviewdetaillongpass.html (accessed on 7 December 2013).

Schott., “B 270 i ultra-white glass,” http://www.schott.com/advanced_optics/english/syn/advanced_optics/products/optical-materials/thin-glass/flat-glass-b-270/index.html (accessed on 7 December 2013).

D. Skoog, F. Holler, and S. Crouch, Principles of Instrumental Analysis (Brooks/Cole, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Illustration of the macro-filter design proposed in [3]. Here, approximate path travelled by the rays DR, working distance W<R, R is the radius of the two spherical surfaces, and n is the filter material.

Fig. 2.
Fig. 2.

Basic illustration of the proposed macro-lens-filter.

Fig. 3.
Fig. 3.

Detailed illustration of the proposed macro-lens-filter. The definition of all the angles involved in analysis of the macro-lens-filter design are shown here.

Fig. 4.
Fig. 4.

Numerical aperture (NA) and spherical aberration (SA) of [3]’s macro-filter and the proposed (Prasad) macro-lens-filter design as a function of the working distance ratio.

Fig. 5.
Fig. 5.

Chromatic aberration of [3]’s macro-filter and the proposed (Prasad) macro-lens-filter design as a function of the working distance ratio.

Fig. 6.
Fig. 6.

Illustration of the simulation setup used for Zemax simulation. The front element is the macro-lens-filter, the back element is the plano–convex lens used for focusing the rays from the macro-lens-filter. Red, green, and blue lines indicate rays from three field points corresponding to y=0mm, y=10mm, y=20mm.

Fig. 7.
Fig. 7.

RMS errors are plotted as a function of wavelength. Blue, green, and red lines indicate rays from three field points corresponding to y=0mm, y=10mm, y=20mm.

Fig. 8.
Fig. 8.

RMS errors are plotted as a function of longitudinal deviation from the focal point. Blue, green, and red lines indicate rays from three field points corresponding to y=0mm, y=10mm, y=20mm.

Fig. 9.
Fig. 9.

Optical path differences are plotted as a function of pupil angle and for various wavelength (unit μm) samples in the visible range.

Fig. 10.
Fig. 10.

Difference between the color channels of the object and image planes: (a) object plane, (b) image plane, (c) difference in red channel, (d) difference in green channel, and (e) difference in blue channel.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

a=(R+W)/R,d=D/R.
x=R(acosα),y=Rsinα.
x=R(a+dcosβ),y=Rsinβ.
y=xtan(θ).
α1=α+θ,α3=α2α,
sinα1=n1sinα2.
β1=α3+β,β3=β2β,
sinβ1=n2n1sinβ2.
sinγ=n2sinβ3.
asinθ=sinψ.
β=arcsin(sinα2+dsinα3)α3.
β1=arcsin(sinα2+dsinα3).

Metrics