M. Sjödahl, “Dynamic properties of multispectral speckles in digital holography and image correlation,” Opt. Eng. 52, 101908 (2013).

[CrossRef]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Shape reconstruction using dual wavelength digital holography and speckle movements,” Proc. SPIE 8788, 878801 (2013).

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52, 101912 (2013).

[CrossRef]

M. Sjödahl, E. Hällstig, and D. Khodadad, “Multi-spectral speckles: theory and applications,” Proc. SPIE 8413, 841306 (2012).

P. Bergström, S. Rosendahl, P. Gren, and M. Sjödahl, “Shape verification using dual-wavelength holographic interferometry,” Opt. Eng. 50, 101503 (2011).

[CrossRef]

F. Zhao, X. Xu, and S. Q. Xie, “Survey paper: computer-aided inspection planning-the state of the art,” Comput. Ind. 60, 453–466 (2009).

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Laser. Eng. 47, 552–557 (2009).

[CrossRef]

M. Sjödahl, E. Olsson, E. Amer, and P. Gren, “Depth-resolved measurement of phase gradients in a transient phase object field using pulsed digital holography,” Appl. Opt. 48, H31–H39 (2009).

[CrossRef]

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).

[CrossRef]

A. Wada, M. Kato, and Y. Ishii, “Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes,” J. Opt. Soc. Am. A 25, 3013–3020 (2008).

[CrossRef]

M.-W. Cho, H. Lee, G.-S. Yoon, and J. Choi, “A feature-based inspection planning system for coordinate measuring machines,” Int. J. Adv. Manuf. Tech. 26, 1078–1087 (2005).

[CrossRef]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).

[CrossRef]

R. Klette and K. Schlüns, “Height data from gradient fields,” Proc. SPIE 2908, 204–215 (1996).

P. J. Besl and N. D. McKay, “A method for registration of 3D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).

[CrossRef]

A. Agrawal, R. Raskar, and R. Chellappa, “What is the range of surface reconstructions from a gradient field?” in Computer Vision ECCV 2006, Lecture Notes in Computer Science (Springer-Verlag, 2006), pp. 578–591.

J.-D. Durou, J.-F. Aujol, and F. Courteille, “Integrating the normal field of a surface in the presence of discontinuities,” in Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science (Springer-Verlag, 2009), pp. 261–273.

P. Bergström, S. Rosendahl, P. Gren, and M. Sjödahl, “Shape verification using dual-wavelength holographic interferometry,” Opt. Eng. 50, 101503 (2011).

[CrossRef]

P. J. Besl and N. D. McKay, “A method for registration of 3D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).

[CrossRef]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).

[CrossRef]

A. Agrawal, R. Raskar, and R. Chellappa, “What is the range of surface reconstructions from a gradient field?” in Computer Vision ECCV 2006, Lecture Notes in Computer Science (Springer-Verlag, 2006), pp. 578–591.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).

[CrossRef]

M.-W. Cho, H. Lee, G.-S. Yoon, and J. Choi, “A feature-based inspection planning system for coordinate measuring machines,” Int. J. Adv. Manuf. Tech. 26, 1078–1087 (2005).

[CrossRef]

M.-W. Cho, H. Lee, G.-S. Yoon, and J. Choi, “A feature-based inspection planning system for coordinate measuring machines,” Int. J. Adv. Manuf. Tech. 26, 1078–1087 (2005).

[CrossRef]

J.-D. Durou, J.-F. Aujol, and F. Courteille, “Integrating the normal field of a surface in the presence of discontinuities,” in Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science (Springer-Verlag, 2009), pp. 261–273.

J.-D. Durou, J.-F. Aujol, and F. Courteille, “Integrating the normal field of a surface in the presence of discontinuities,” in Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science (Springer-Verlag, 2009), pp. 261–273.

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Laser. Eng. 47, 552–557 (2009).

[CrossRef]

K. J. Gåsvik, Optical Metrology (Wiley, 1995).

P. Bergström, S. Rosendahl, P. Gren, and M. Sjödahl, “Shape verification using dual-wavelength holographic interferometry,” Opt. Eng. 50, 101503 (2011).

[CrossRef]

M. Sjödahl, E. Olsson, E. Amer, and P. Gren, “Depth-resolved measurement of phase gradients in a transient phase object field using pulsed digital holography,” Appl. Opt. 48, H31–H39 (2009).

[CrossRef]

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Laser. Eng. 47, 552–557 (2009).

[CrossRef]

Y. Li and P. Gu, “Free-form surface inspection techniques state of the art review,” Comput. Aided Des. 36, 1395–1417 (2004).

[CrossRef]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Shape reconstruction using dual wavelength digital holography and speckle movements,” Proc. SPIE 8788, 878801 (2013).

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52, 101912 (2013).

[CrossRef]

M. Sjödahl, E. Hällstig, and D. Khodadad, “Multi-spectral speckles: theory and applications,” Proc. SPIE 8413, 841306 (2012).

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Laser. Eng. 47, 552–557 (2009).

[CrossRef]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Shape reconstruction using dual wavelength digital holography and speckle movements,” Proc. SPIE 8788, 878801 (2013).

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52, 101912 (2013).

[CrossRef]

M. Sjödahl, E. Hällstig, and D. Khodadad, “Multi-spectral speckles: theory and applications,” Proc. SPIE 8413, 841306 (2012).

R. Klette and K. Schlüns, “Height data from gradient fields,” Proc. SPIE 2908, 204–215 (1996).

T. Wei and R. Klette, “Height from gradient using surface curvature and area constraints,” in 3rd Indian Conference on Computer Vision, Graphics and Image Processing (Allied Publishers, 2002), pp. 1–6.

T. Wei and R. Klette, “Depth recovery from noisy gradient vector fields using regularization,” in Computer Analysis of Images and Patterns, Lecture Notes in Computer Science (Springer-Verlag, 2003), pp. 116–123.

T. Kreis, Holographic Interferometry Principles and Methods (Akademie Verlag, 1996).

M.-W. Cho, H. Lee, G.-S. Yoon, and J. Choi, “A feature-based inspection planning system for coordinate measuring machines,” Int. J. Adv. Manuf. Tech. 26, 1078–1087 (2005).

[CrossRef]

Y. Li and P. Gu, “Free-form surface inspection techniques state of the art review,” Comput. Aided Des. 36, 1395–1417 (2004).

[CrossRef]

P. J. Besl and N. D. McKay, “A method for registration of 3D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).

[CrossRef]

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Laser. Eng. 47, 552–557 (2009).

[CrossRef]

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Laser. Eng. 47, 552–557 (2009).

[CrossRef]

A. Agrawal, R. Raskar, and R. Chellappa, “What is the range of surface reconstructions from a gradient field?” in Computer Vision ECCV 2006, Lecture Notes in Computer Science (Springer-Verlag, 2006), pp. 578–591.

P. Bergström, S. Rosendahl, P. Gren, and M. Sjödahl, “Shape verification using dual-wavelength holographic interferometry,” Opt. Eng. 50, 101503 (2011).

[CrossRef]

R. Klette and K. Schlüns, “Height data from gradient fields,” Proc. SPIE 2908, 204–215 (1996).

M. Sjödahl, “Dynamic properties of multispectral speckles in digital holography and image correlation,” Opt. Eng. 52, 101908 (2013).

[CrossRef]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Shape reconstruction using dual wavelength digital holography and speckle movements,” Proc. SPIE 8788, 878801 (2013).

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52, 101912 (2013).

[CrossRef]

M. Sjödahl, E. Hällstig, and D. Khodadad, “Multi-spectral speckles: theory and applications,” Proc. SPIE 8413, 841306 (2012).

P. Bergström, S. Rosendahl, P. Gren, and M. Sjödahl, “Shape verification using dual-wavelength holographic interferometry,” Opt. Eng. 50, 101503 (2011).

[CrossRef]

M. Sjödahl, E. Olsson, E. Amer, and P. Gren, “Depth-resolved measurement of phase gradients in a transient phase object field using pulsed digital holography,” Appl. Opt. 48, H31–H39 (2009).

[CrossRef]

E.-L. Johansson, L. Benckert, and M. Sjödahl, “Phase object data obtained from defocused laser speckle displacement,” Appl. Opt. 43, 3229–3234 (2004).

[CrossRef]

M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36, 2875–2885 (1997).

[CrossRef]

M. Sjödahl, “Electronic speckle photography: increased accuracy by nonintegral pixel shifting,” Appl. Opt. 33, 6667–6673 (1994).

[CrossRef]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).

[CrossRef]

T. Wei and R. Klette, “Height from gradient using surface curvature and area constraints,” in 3rd Indian Conference on Computer Vision, Graphics and Image Processing (Allied Publishers, 2002), pp. 1–6.

T. Wei and R. Klette, “Depth recovery from noisy gradient vector fields using regularization,” in Computer Analysis of Images and Patterns, Lecture Notes in Computer Science (Springer-Verlag, 2003), pp. 116–123.

F. Zhao, X. Xu, and S. Q. Xie, “Survey paper: computer-aided inspection planning-the state of the art,” Comput. Ind. 60, 453–466 (2009).

F. Zhao, X. Xu, and S. Q. Xie, “Survey paper: computer-aided inspection planning-the state of the art,” Comput. Ind. 60, 453–466 (2009).

M.-W. Cho, H. Lee, G.-S. Yoon, and J. Choi, “A feature-based inspection planning system for coordinate measuring machines,” Int. J. Adv. Manuf. Tech. 26, 1078–1087 (2005).

[CrossRef]

F. Zhao, X. Xu, and S. Q. Xie, “Survey paper: computer-aided inspection planning-the state of the art,” Comput. Ind. 60, 453–466 (2009).

M. Sjödahl, “Electronic speckle photography: increased accuracy by nonintegral pixel shifting,” Appl. Opt. 33, 6667–6673 (1994).

[CrossRef]

M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36, 2875–2885 (1997).

[CrossRef]

E.-L. Johansson, L. Benckert, and M. Sjödahl, “Phase object data obtained from defocused laser speckle displacement,” Appl. Opt. 43, 3229–3234 (2004).

[CrossRef]

M. Sjödahl, E. Olsson, E. Amer, and P. Gren, “Depth-resolved measurement of phase gradients in a transient phase object field using pulsed digital holography,” Appl. Opt. 48, H31–H39 (2009).

[CrossRef]

Y. Li and P. Gu, “Free-form surface inspection techniques state of the art review,” Comput. Aided Des. 36, 1395–1417 (2004).

[CrossRef]

F. Zhao, X. Xu, and S. Q. Xie, “Survey paper: computer-aided inspection planning-the state of the art,” Comput. Ind. 60, 453–466 (2009).

P. J. Besl and N. D. McKay, “A method for registration of 3D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).

[CrossRef]

M.-W. Cho, H. Lee, G.-S. Yoon, and J. Choi, “A feature-based inspection planning system for coordinate measuring machines,” Int. J. Adv. Manuf. Tech. 26, 1078–1087 (2005).

[CrossRef]

D. Khodadad, E. Hällstig, and M. Sjödahl, “Dual-wavelength digital holographic shape measurement using speckle movements and phase gradients,” Opt. Eng. 52, 101912 (2013).

[CrossRef]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).

[CrossRef]

P. Bergström, S. Rosendahl, P. Gren, and M. Sjödahl, “Shape verification using dual-wavelength holographic interferometry,” Opt. Eng. 50, 101503 (2011).

[CrossRef]

M. Sjödahl, “Dynamic properties of multispectral speckles in digital holography and image correlation,” Opt. Eng. 52, 101908 (2013).

[CrossRef]

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Laser. Eng. 47, 552–557 (2009).

[CrossRef]

R. Klette and K. Schlüns, “Height data from gradient fields,” Proc. SPIE 2908, 204–215 (1996).

D. Khodadad, E. Hällstig, and M. Sjödahl, “Shape reconstruction using dual wavelength digital holography and speckle movements,” Proc. SPIE 8788, 878801 (2013).

M. Sjödahl, E. Hällstig, and D. Khodadad, “Multi-spectral speckles: theory and applications,” Proc. SPIE 8413, 841306 (2012).

K. J. Gåsvik, Optical Metrology (Wiley, 1995).

T. Kreis, Holographic Interferometry Principles and Methods (Akademie Verlag, 1996).

J.-D. Durou, J.-F. Aujol, and F. Courteille, “Integrating the normal field of a surface in the presence of discontinuities,” in Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science (Springer-Verlag, 2009), pp. 261–273.

A. Agrawal, R. Raskar, and R. Chellappa, “What is the range of surface reconstructions from a gradient field?” in Computer Vision ECCV 2006, Lecture Notes in Computer Science (Springer-Verlag, 2006), pp. 578–591.

T. Wei and R. Klette, “Depth recovery from noisy gradient vector fields using regularization,” in Computer Analysis of Images and Patterns, Lecture Notes in Computer Science (Springer-Verlag, 2003), pp. 116–123.

T. Wei and R. Klette, “Height from gradient using surface curvature and area constraints,” in 3rd Indian Conference on Computer Vision, Graphics and Image Processing (Allied Publishers, 2002), pp. 1–6.