Abstract

An orthogonal reference pattern multiplexing (ORPM) method for collinear holographic data storage (CHDS) is investigated to increase the data storage density and realize parallel optical image superimposition. Holograms are multiplexed in the same volume of the recording medium with multiple orthogonal reference patterns (RPs). The physical principle of this method is analyzed based on scalar diffraction theory. The orthogonal condition of the RPs is derived in order to suppress the interpage cross talk. The parameters of the radial-line RP have significant influence on the signal-to-noise ratio (SNR) of the reconstructed data page. They are optimized to reduce the intrapage cross talk. With a random binary phase mask (RBPM) located closely before the spatial light modulator, SNR of the reconstructed data page is seven times the SNR without the RBPM. Three data pages are multiplexed in the same volume of the medium using the ORPM method. The reconstructed data pages for the CHDS system show the effectiveness of the RBPM in suppressing the intrapage and interpage cross talk.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Horimai, X. D. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    [CrossRef]
  2. S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” Appl. Opt. 48, 6851–6861 (2009).
    [CrossRef]
  3. Y. W. Yu, C. Y. Chen, and C. C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130–1132 (2010).
    [CrossRef]
  4. W. Jia, Z. Y. Chen, F. J. Wen, C. H. Zhou, Y. T. Chow, and P. S. Chung, “Coaxial holographic encoding based on pure phase modulation,” Appl. Opt. 50, H10–H15 (2011).
    [CrossRef]
  5. H. Horimai and X. D. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).
  6. H. Horimai and X. D. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943–947 (2007).
    [CrossRef]
  7. T. Tanaka, “Recording and reading temperature tolerance in holographic data storage, in relation to the anisotropic thermal expansion of a photopolymer medium,” Opt. Express 17, 14132–14142 (2009).
    [CrossRef]
  8. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
    [CrossRef]
  9. H. Horimai, X. D. Tan, J. Li, and K. Suzuki, “Wavelength margin analysis in advanced collinear holography,” Jpn. J. Appl. Phys. 44, 3493–3494 (2005).
    [CrossRef]
  10. J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Wavelength and defocus margins of the collinear holographic storage system,” Proc. SPIE 7851, 785115 (2010).
  11. J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37, 936–938 (2012).
    [CrossRef]
  12. Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
    [CrossRef]
  13. C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15, 18111–18118 (2007).
    [CrossRef]
  14. Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
    [CrossRef]
  15. M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
    [CrossRef]
  16. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. D. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
    [CrossRef]
  17. H. J. Coufal, D. Psaltis, and G. T. E. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Science (Springer-Verlag, 2000), pp. 31–35.
  18. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
    [CrossRef]
  19. F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991).
    [CrossRef]
  20. W. Song, S. Tao, and D. Wang, “Investigation on influence of wavefront property of reference beams on the quality of images reconstructed from holograms,” Proc. SPIE 7730, 77301V (2010).

2012

2011

W. Jia, Z. Y. Chen, F. J. Wen, C. H. Zhou, Y. T. Chow, and P. S. Chung, “Coaxial holographic encoding based on pure phase modulation,” Appl. Opt. 50, H10–H15 (2011).
[CrossRef]

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

2010

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Wavelength and defocus margins of the collinear holographic storage system,” Proc. SPIE 7851, 785115 (2010).

W. Song, S. Tao, and D. Wang, “Investigation on influence of wavefront property of reference beams on the quality of images reconstructed from holograms,” Proc. SPIE 7730, 77301V (2010).

Y. W. Yu, C. Y. Chen, and C. C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130–1132 (2010).
[CrossRef]

2009

2007

C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15, 18111–18118 (2007).
[CrossRef]

H. Horimai and X. D. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943–947 (2007).
[CrossRef]

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

2006

2005

H. Horimai, X. D. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
[CrossRef]

H. Horimai and X. D. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, “Wavelength margin analysis in advanced collinear holography,” Jpn. J. Appl. Phys. 44, 3493–3494 (2005).
[CrossRef]

2003

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

1998

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

1991

Bair, H.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Boyd, C.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Cao, L. C.

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37, 936–938 (2012).
[CrossRef]

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Wavelength and defocus margins of the collinear holographic storage system,” Proc. SPIE 7851, 785115 (2010).

Chen, C. Y.

Chen, Z. Y.

Cheng, C. Y.

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

Chow, Y. T.

Chung, P. S.

Dhar, L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Fujimura, R.

Gu, H. R.

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37, 936–938 (2012).
[CrossRef]

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Wavelength and defocus margins of the collinear holographic storage system,” Proc. SPIE 7851, 785115 (2010).

Hara, M.

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

Hayashi, K.

He, Q. S.

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37, 936–938 (2012).
[CrossRef]

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Wavelength and defocus margins of the collinear holographic storage system,” Proc. SPIE 7851, 785115 (2010).

Horimai, H.

H. Horimai and X. D. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943–947 (2007).
[CrossRef]

T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. D. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
[CrossRef]

H. Horimai and X. D. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, “Wavelength margin analysis in advanced collinear holography,” Jpn. J. Appl. Phys. 44, 3493–3494 (2005).
[CrossRef]

H. Horimai, X. D. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
[CrossRef]

Hsiao, Y. N.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Hsieh, S. C.

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15, 18111–18118 (2007).
[CrossRef]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Ichimura, S.

Jia, W.

Jin, G. F.

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37, 936–938 (2012).
[CrossRef]

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Wavelength and defocus margins of the collinear holographic storage system,” Proc. SPIE 7851, 785115 (2010).

Kawano, K.

Kuroda, K.

Li, J.

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, “Wavelength margin analysis in advanced collinear holography,” Jpn. J. Appl. Phys. 44, 3493–3494 (2005).
[CrossRef]

H. Horimai, X. D. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
[CrossRef]

Li, J. H.

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37, 936–938 (2012).
[CrossRef]

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Wavelength and defocus margins of the collinear holographic storage system,” Proc. SPIE 7851, 785115 (2010).

Lin, S. H.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Minabe, J.

Mok, F. H.

Nitanai, E.

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

Nomura, T.

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

Numata, T.

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

Ogasawara, Y.

Saita, Y.

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

Schilling, M.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Schnoes, M. G.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Shimura, T.

Song, W.

W. Song, S. Tao, and D. Wang, “Investigation on influence of wavefront property of reference beams on the quality of images reconstructed from holograms,” Proc. SPIE 7730, 77301V (2010).

Stoll, H. M.

Sun, C. C.

Suzuki, K.

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, “Wavelength margin analysis in advanced collinear holography,” Jpn. J. Appl. Phys. 44, 3493–3494 (2005).
[CrossRef]

Tackitt, M. C.

Tan, X. D.

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37, 936–938 (2012).
[CrossRef]

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Wavelength and defocus margins of the collinear holographic storage system,” Proc. SPIE 7851, 785115 (2010).

H. Horimai and X. D. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943–947 (2007).
[CrossRef]

T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. D. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
[CrossRef]

H. Horimai and X. D. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, “Wavelength margin analysis in advanced collinear holography,” Jpn. J. Appl. Phys. 44, 3493–3494 (2005).
[CrossRef]

H. Horimai, X. D. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
[CrossRef]

Tanaka, K.

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

Tanaka, T.

T. Tanaka, “Recording and reading temperature tolerance in holographic data storage, in relation to the anisotropic thermal expansion of a photopolymer medium,” Opt. Express 17, 14132–14142 (2009).
[CrossRef]

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

Tao, S.

W. Song, S. Tao, and D. Wang, “Investigation on influence of wavefront property of reference beams on the quality of images reconstructed from holograms,” Proc. SPIE 7730, 77301V (2010).

Teng, T. C.

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15, 18111–18118 (2007).
[CrossRef]

Toishi, M.

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

Tsai, M. F.

Wang, D.

W. Song, S. Tao, and D. Wang, “Investigation on influence of wavefront property of reference beams on the quality of images reconstructed from holograms,” Proc. SPIE 7730, 77301V (2010).

Watanabe, K.

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

Wen, F. J.

Whang, W. T.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Wysocki, T. L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Yasuda, S.

Yu, Y. W.

Zhou, C. H.

Appl. Opt.

Appl. Phys. Lett.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

IEEE Trans. Magn.

H. Horimai and X. D. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943–947 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, “Wavelength margin analysis in advanced collinear holography,” Jpn. J. Appl. Phys. 44, 3493–3494 (2005).
[CrossRef]

Opt. Commun.

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

Opt. Eng.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

W. Song, S. Tao, and D. Wang, “Investigation on influence of wavefront property of reference beams on the quality of images reconstructed from holograms,” Proc. SPIE 7730, 77301V (2010).

J. H. Li, L. C. Cao, H. R. Gu, X. D. Tan, Q. S. He, and G. F. Jin, “Wavelength and defocus margins of the collinear holographic storage system,” Proc. SPIE 7851, 785115 (2010).

H. Horimai and X. D. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).

Other

H. J. Coufal, D. Psaltis, and G. T. E. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Science (Springer-Verlag, 2000), pp. 31–35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of the ORPM for the transmission type of the CHDS configuration. (a) Recording process and (b) reconstruction process. SLM, spatial light modulator; RPn, the nth RP; Dn, the nth date page; Rn, the nth reconstructed data page; f, the focal length of lens1.

Fig. 2.
Fig. 2.

Optical model for the transmission type of CHDS system.

Fig. 3.
Fig. 3.

Schematic of the parameters for orthogonal RPs. (a) Radial-line RP; (b) enlarged view of the rectangular part in (a); (c) orthogonal radial-line RPs. RP1, RP2 and RP3 are uniformly spaced and orthogonal with each other.

Fig. 4.
Fig. 4.

(a) Original data page, (b) the reconstructed data page, and (c) intensity histogram for the reconstructed data page.

Fig. 5.
Fig. 5.

SNR of the reconstructed data pages as a function of the parameters of the radial-line RP. (a) The angle between the adjacent radial lines, (b) the fill factor, and (c) the ratio of inner and outer radius.

Fig. 6.
Fig. 6.

CHDS system with a RBPM located closely before the SLM.

Fig. 7.
Fig. 7.

(a) Reconstructed data page with radial-line RP and RBPM, (b) SNR as a function of the medium thickness with and without RBPM, and (c) intensity histogram for the reconstructed data page of (a) and the raw BER is zero.

Fig. 8.
Fig. 8.

(a)–(c) Three different data pages uploaded on the SLM; (d) parallel image superimposition of the data pages (a), (b) and (c).

Fig. 9.
Fig. 9.

Reconstructed data pages using three orthogonal RPs for the CHDS system without RBPM modulation. (a)–(c) The reconstructed data page produced by uploading the corresponding orthogonal radial-line RP; (d) parallel image superimposition of the data pages (a), (b), and (c) with all orthogonal radial-line RPs uploaded on the SLM simultaneously.

Fig. 10.
Fig. 10.

Reconstructed data pages using three orthogonal RPs for the CHDS system with RBPM modulation. (a)–(c) The reconstructed data page produced by uploading the corresponding orthogonal radial-line RP; (d) parallel image superimposition of the data pages (a), (b), and (c) with all orthogonal radial-line RPs uploaded on the SLM simultaneously.

Tables (1)

Tables Icon

Table 1. Parameters for Numerical Evaluation of the Cross Talk

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δε(xf,yf,z)n=1NRn*(xf,yf,z)Sn(xf,yf,z)+c.c.,
Rn(xf,yf,z)=exp(2jkf)jλfexp(jkz)×F{RPn(x0,y0)exp(jπzλf2(x02+y02))}fx=xfλf,fy=yfλf,
Sn(xf,yf,z)=exp(2jkf)jλfexp(jkz)×F{DPn(x0,y0)exp(jπzλf2(x02+y02))}fx=xfλf,fy=yfλf,
Um(xf,yf,z)Rm(xf,yf,z)n=1NRn*(xf,yf,z)Sn(xf,yf,z).
Em(xd,yd,z)exp(jkz)exp(jπzxd2+yd2λf2)F{Um(xf,yf,z)}fx=xdλf,fy=ydλf.
Em(xd,yd)t/2t/2exp(jπzxd2+yd2λf2)n=1NF{Rm(xf,yf,z)Rn*(xf,yf,z)Sn(xf,yf,z)}fx=xdλf,fy=ydλfdz.
Em(xd,yd)n=1Nt/2t/2exp(jπzxd2+yd2λf2)[RPm(xd,yd)exp(jπzλf2(xd2+yd2))][RPn(xd,yd)exp(jπzλf2(xd2+yd2))][DPn(xd,yd)exp(jπzλf2(xd2+yd2))]dz,
DPn(xd,yd)=Anδ(xd,yd),
PSFm(xd,yd)n=1NAnt/2t/2exp(jπzxd2+yd2λf2)[RPm(xd,yd)exp(jπzλf2(xd2+yd2))][RPn(xd,yd)exp(jπzλf2(xd2+yd2))]dz.
PSFm(xd,yd)n=1NAnRPm(x0,y0)RPn*(x0+xd,y0+yd)tsinc[tλf2(xd2+yd2+xdx0+ydy0)]dx0dy0.
PSFm(0,0)n=1NAnRPm(x0,y0)RPn*(x0,y0)dx0dy0.
RPm(x0,y0)RPn*(x0,y0)dx0dy0=Constant·δm,n,
PSFijk(0,0)=Ai+Aj+Ak.
Nmax1/η.
SNR=μonμoffσon2+σoff2
BER=Number of error pixelsTotal number of pixels,

Metrics