Abstract

This paper provides the details of a multiaxis electric field sensor. The sensing element consists of three slab coupled optical-fiber sensors that are combined to allow directional electric field sensing. The packaged three-axis sensor has a small cross-sectional area of 0.5cm×0.5cm by using an x-cut crystal. A method is described that uses a sensitivity-matrix approach to map the measurements to field components. The calibration and testing are described, resulting in an average error of 1.5°.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Keuren and K. Knighten, “Implication of the high-power microwave weapon threat in electronic system design,” in 1991 IEEE International Symposium on Electromagnetic Compatibility (IEEE, 1991), pp. 370–371.
  2. C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
    [CrossRef]
  3. A. E. Pevler, “Security implications of high-power microwave technology,” in Proceedings of the 1997 International Symposium on Technology and Society (IEEE, 1997), pp. 107–111.
  4. C. R. Miller, “Electromagnetic pulse threats in 2010,” United States, Report (Center for Strategy and Technology Air War College, Air University, 2005).
  5. R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240(2008).
    [CrossRef]
  6. S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, R. Forber, J. Luo, and A. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
    [CrossRef]
  7. B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).
  8. S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
    [CrossRef]
  9. D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
    [CrossRef]
  10. R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139–2144 (2007).
    [CrossRef]
  11. T. Lowder, “Surface relief D-fiber Bragg gratings for sensing applications,” Dissertation (Brigham Young University, 2008).
  12. M. A. Jensen and R. H. Selfridge, “Analysis of etching-induced birefringence changes in elliptic core fibers,” Appl. Opt. 31, 2011–2016 (1992).
    [CrossRef]
  13. C. A. Millar, M. C. Brierley, and S. R. Mallinson, “Exposed-core single-mode-fiber channel-dropping filter using a high index overlay waveguide,” Opt. Lett. 12, 284–286 (1987).
    [CrossRef]
  14. E. Van Tomme, P. Van Daele, P. Baets, and P. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–787 (1991).
    [CrossRef]
  15. B. Whitaker, J. Noren, S. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
    [CrossRef]
  16. B. Shreeve, “Magnetic field sensing with slab coupled optical fiber sensors,” Master’s thesis (Brigham Young University, 2011).
  17. K. H. Smith, “In-fiber optical devices based on D-fiber,” Ph.D dissertation (Brigham Young University, 2005).
  18. Telecommunications: glossary of telecommunication terms. General Services Administration Information Technology Service, 1991.
  19. D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 7648, 76480D (2010).
    [CrossRef]

2013 (1)

B. Whitaker, J. Noren, S. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

2012 (1)

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

2011 (2)

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, R. Forber, J. Luo, and A. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

2010 (2)

B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 7648, 76480D (2010).
[CrossRef]

2008 (1)

2007 (1)

1992 (1)

1991 (1)

E. Van Tomme, P. Van Daele, P. Baets, and P. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–787 (1991).
[CrossRef]

1987 (1)

1978 (1)

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Baets, P.

E. Van Tomme, P. Van Daele, P. Baets, and P. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–787 (1991).
[CrossRef]

Baum, C. E.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Breen, E. L.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Brierley, M. C.

Chadderdon, S.

B. Whitaker, J. Noren, S. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, R. Forber, J. Luo, and A. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

Forber, R.

B. Whitaker, J. Noren, S. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, R. Forber, J. Luo, and A. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).

R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240(2008).
[CrossRef]

Gibson, R.

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, R. Forber, J. Luo, and A. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 7648, 76480D (2010).
[CrossRef]

R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240(2008).
[CrossRef]

R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139–2144 (2007).
[CrossRef]

Giles, J. C.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Jen, A.

Jensen, M. A.

Keuren, E. B.

E. B. Keuren and K. Knighten, “Implication of the high-power microwave weapon threat in electronic system design,” in 1991 IEEE International Symposium on Electromagnetic Compatibility (IEEE, 1991), pp. 370–371.

Knighten, K.

E. B. Keuren and K. Knighten, “Implication of the high-power microwave weapon threat in electronic system design,” in 1991 IEEE International Symposium on Electromagnetic Compatibility (IEEE, 1991), pp. 370–371.

Kvavle, J.

Lagasse, P.

E. Van Tomme, P. Van Daele, P. Baets, and P. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–787 (1991).
[CrossRef]

Lowder, T.

T. Lowder, “Surface relief D-fiber Bragg gratings for sensing applications,” Dissertation (Brigham Young University, 2008).

Luo, J.

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, R. Forber, J. Luo, and A. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).

Mallinson, S. R.

Millar, C. A.

Miller, C. R.

C. R. Miller, “Electromagnetic pulse threats in 2010,” United States, Report (Center for Strategy and Technology Air War College, Air University, 2005).

Noren, J.

B. Whitaker, J. Noren, S. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

O’Neill, J.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Perry, D.

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 7648, 76480D (2010).
[CrossRef]

Pevler, A. E.

A. E. Pevler, “Security implications of high-power microwave technology,” in Proceedings of the 1997 International Symposium on Technology and Society (IEEE, 1997), pp. 107–111.

Schreeve, B.

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 7648, 76480D (2010).
[CrossRef]

Schultz, S.

B. Whitaker, J. Noren, S. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, R. Forber, J. Luo, and A. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 7648, 76480D (2010).
[CrossRef]

R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240(2008).
[CrossRef]

R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139–2144 (2007).
[CrossRef]

Selfridge, D.

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 7648, 76480D (2010).
[CrossRef]

Selfridge, R.

B. Whitaker, J. Noren, S. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, R. Forber, J. Luo, and A. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).

R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240(2008).
[CrossRef]

R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139–2144 (2007).
[CrossRef]

Selfridge, R. H.

Shreeve, B.

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).

B. Shreeve, “Magnetic field sensing with slab coupled optical fiber sensors,” Master’s thesis (Brigham Young University, 2011).

Smith, K. H.

K. H. Smith, “In-fiber optical devices based on D-fiber,” Ph.D dissertation (Brigham Young University, 2005).

Sower, G. D.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Van Daele, P.

E. Van Tomme, P. Van Daele, P. Baets, and P. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–787 (1991).
[CrossRef]

Van Tomme, E.

E. Van Tomme, P. Van Daele, P. Baets, and P. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–787 (1991).
[CrossRef]

Van Wagoner, J.

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

Wang, W.

B. Whitaker, J. Noren, S. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, R. Forber, J. Luo, and A. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).

R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240(2008).
[CrossRef]

Whitaker, B.

B. Whitaker, J. Noren, S. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

E. Van Tomme, P. Van Daele, P. Baets, and P. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–787 (1991).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

J. Directed Energy (1)

B. Shreeve, R. Gibson, D. Perry, R. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Nonintrusive field characterization in interior cavities with slab-coupled optical sensor,” J. Directed Energy 4, 136–146 (2010).

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (3)

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 7648, 76480D (2010).
[CrossRef]

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

D. Perry, S. Chadderdon, R. Gibson, B. Shreeve, R. Selfridge, S. Schultz, W. Wang, R. Forber, and J. Luo, “Electro-optic polymer electric field sensor,” Proc. SPIE 7982, 9820Q (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Whitaker, J. Noren, S. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

Other (7)

B. Shreeve, “Magnetic field sensing with slab coupled optical fiber sensors,” Master’s thesis (Brigham Young University, 2011).

K. H. Smith, “In-fiber optical devices based on D-fiber,” Ph.D dissertation (Brigham Young University, 2005).

Telecommunications: glossary of telecommunication terms. General Services Administration Information Technology Service, 1991.

A. E. Pevler, “Security implications of high-power microwave technology,” in Proceedings of the 1997 International Symposium on Technology and Society (IEEE, 1997), pp. 107–111.

C. R. Miller, “Electromagnetic pulse threats in 2010,” United States, Report (Center for Strategy and Technology Air War College, Air University, 2005).

T. Lowder, “Surface relief D-fiber Bragg gratings for sensing applications,” Dissertation (Brigham Young University, 2008).

E. B. Keuren and K. Knighten, “Implication of the high-power microwave weapon threat in electronic system design,” in 1991 IEEE International Symposium on Electromagnetic Compatibility (IEEE, 1991), pp. 370–371.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (27)

Fig. 1.
Fig. 1.

Linear optic waveguide attached to an etched D-fiber forming the basis for an SCOS device.

Fig. 2.
Fig. 2.

(a) SCOS showing optical input into D-fiber. (b) SCOS transmission spectrum showing resonant modes.

Fig. 3.
Fig. 3.

Block diagram of the setup to interrogate an SCOS device.

Fig. 4.
Fig. 4.

Transmission spectrum of an SCOS showing power shift due to an electric field.

Fig. 5.
Fig. 5.

Steps in fabricating an SCOS. (1) Strip the fiber jacket. (2) Etch the fiber. (3) Attach the electro-optic slab waveguide.

Fig. 6.
Fig. 6.

125 μm D-fiber with the elliptical core positioned 13 μm from the flat edge.

Fig. 7.
Fig. 7.

Setup for etching a D-fiber to remove cladding around the core.

Fig. 8.
Fig. 8.

Transmission spectrum for a well-made SCOS. The resonance dips should be between 15 and 20 dB deep.

Fig. 9.
Fig. 9.

Linear optic tensor for KTP and electro-optic polymer. With electro-optic polymer r13=r23=r42=r51.

Fig. 10.
Fig. 10.

Ratio of induced change in the refractive index due to an electric field in the z direction versus the worst case of induced refractive index change due to an electric field in either the x or y directions. The dashed line is for KTP and the solid line is for polymer.

Fig. 11.
Fig. 11.

Four coordinate systems for the multiaxis SCOS.

Fig. 12.
Fig. 12.

Unit vectors for the three optic axes relative to the global axes.

Fig. 13.
Fig. 13.

Setup for a three-axis SCOS.

Fig. 14.
Fig. 14.

Setup of a three-axis SCOS using x-polished KTP.

Fig. 15.
Fig. 15.

Cross section of an SCOS device in packaging.

Fig. 16.
Fig. 16.

Cross-sectional view of a three-axis SCOS sensor.

Fig. 17.
Fig. 17.

Photograph of a three-axis SCOS sensor.

Fig. 18.
Fig. 18.

SCOS interrogation setup.

Fig. 19.
Fig. 19.

Setup to test xy applied electric field.

Fig. 20.
Fig. 20.

Setup to test xz applied electric field.

Fig. 21.
Fig. 21.

Photograph of the three-axis SCOS device between two rotating electrodes.

Fig. 22.
Fig. 22.

Resonance dips for the three-axis SCOS that was used in testing. The x sensor used polymer, the y sensor was z-cut KTP, and the z sensor used x-cut KTP.

Fig. 23.
Fig. 23.

Illustration of the measurement configuration with the unit vector of the third SCOS aligned to be parallel to the rotation axis of the test setup. The thick black lines correspond to the parallel plate electrodes.

Fig. 24.
Fig. 24.

Illustration of the measurement configuration with the unit vector of the (a) second and (b) first SCOS aligned to be parallel to the rotation axis of the test setup. The thick black lines correspond to the parallel plate electrodes.

Fig. 25.
Fig. 25.

Normalized voltage as a function of angle for (solid) SCOS 1 and (dashed) SCOS 2. The difference between the maximum of sensor 1 and the minimum of sensor 2 is the angle offset.

Fig. 26.
Fig. 26.

Measured voltage over sensor 1 (dotted curve) with the best-fit line (solid curve).

Fig. 27.
Fig. 27.

(a) Angle error with the electric field applied in the xy plane. (b) Angle error with the electric field applied in the xz plane.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

λm=2tm(n02Nf2)12,
Δn0=12n03reffE,
Vrec=(ΔPE)RGE=CE,
(1nx2+r13Ez)x2+(1ny2+r23Ez)y2+(1nz2+r33Ez)z2+2r42Eyyz+2r51Exxz=1,
θx=12tan1(2r42Ey1ny21nz2)
θy=12tan1(2r51Ex1nx21nz2)
Δnij=ni(Ez=E0)nini(Ej=E0)ni,
s^1=1x^+0y^+0z^,
s^2=s2xx^+s2yy^+0z^,
s^3=s3xx^+s3yy^+s3zz^.
[C100C2s2xC2s2y0C3s3xC3s3yC3s3z][ExEyEz]=[V1V2V3],
s^1s^2=cosα,
s^1s^3=cosβ,
s^2s^3=cosγ.
s2x=cosα,
s2y=1s2x2,
s3x=cosβ,
s3y=cosγs2xs3xs2y,
s3z=1s3x2s3y2.
C=a1(Ved),
s^1=1x^+0y^+0z^,
s^2=0.0525+0.988y^+0z^,
s^3=0.156x^+0y^+0.988z^.
[2.5000.00630.119800.131400.8297][ExEyEz]=[V1V2V3],

Metrics