Abstract

We demonstrate what we believe to be the first real-time impairment-cancellation system for group-velocity dispersion (GVD) and differential group delay (DGD) for a 640Gb/s single-channel signal. Simultaneous compensation of two independent parameters is demonstrated by feedback control of separate GVD and DGD compensators using an impairment monitor based on an integrated all-optical radio-frequency (RF) spectrum analyzer. We show that low-bandwidth measurement of only a single tone in the RF spectrum is sufficient for automatic compensation for multiple degrees of freedom using a multivariate optimization scheme.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminow, T. Li, and A. E. Willner, eds., Optical Fiber Telecommunications V, A: Components and Subsystems, 5th ed. (Academic, 2008).
  2. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6  Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26, 79–84 (2008).
    [CrossRef]
  3. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370×294  Gb/s) PDM-128QAM-OFDM transmission over 3×55  km SSMF using pilot-based phase noise mitigation” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.
  4. P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711–4728 (2006).
    [CrossRef]
  5. M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640  Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34, 907–908 (1998).
    [CrossRef]
  6. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2  Tb/s TDM-data capacity using 16-QAM and coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.
  7. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  8. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28  Tbits/s−70  km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
    [CrossRef]
  9. H. Sunnerud, M. Westlund, J. Li, J. Hansryd, M. Karlsson, P.-O. Hedekvist, and P. Andrekson, “Long-term 160  Gb/s-TDM, RZ transmission with automatic PMD compensation and system monitoring using an optical sampling system,” in ECOC ’01: 27th European Conference on Optical Communication (IEEE, 2001), Vol. 6, pp. 18–19.
  10. B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
    [CrossRef]
  11. S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004).
    [CrossRef]
  12. M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
    [CrossRef]
  13. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
    [CrossRef]
  14. A. Sano, T. Kataoka, M. Tomizawa, K. Hagimoto, K. Sato, K. Wakita, and K. Kato, “Automatic dispersion equalization by monitoring extracted-clock power level in a 40  Gbit/s, 200 km transmission line,” in ECOC ’96: 22nd European Conference on Optical Communication (IEEE, 1996), Vol. 2, pp. 207–210.
  15. F. Heismann, D. A. Fishman, and D. L. Wilson, “Automatic compensation of first-order polarization mode dispersion in a 10  Gb/s transmission system,” in 24th European Conference on Optical Communication (IEEE, 1998), Vol. 1, pp. 529–530.
  16. M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18, 941–951 (2000).
    [CrossRef]
  17. M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
    [CrossRef]
  18. T. Takahashi, T. Imai, and M. Aiki, “Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
    [CrossRef]
  19. Y. Paquot, J. Schröder, J. Van Erps, T. D. Vo, M. D. Pelusi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal,” Opt. Express 19, 25512–25520 (2011).
    [CrossRef]
  20. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Transmission of 42.8  Gbit/s Polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation,” in OFC/NFOEC 2007: Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), pp. 1–3.
  21. F. Buchali and H. Bülow, “Adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol. 22, 1116–1126 (2004).
    [CrossRef]
  22. J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60, 87–111 (1986).
    [CrossRef]
  23. I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
    [CrossRef]
  24. P. S. Westbrook, S. Hunsche, G. Raybon, T.-H. Her, and B. J. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193–1194(2002).
    [CrossRef]
  25. P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T.-H. Her, “Measurement of residual chromatic dispersion of a 40  Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
    [CrossRef]
  26. J. Schröder, O. Brasier, J. Van Erps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightwave Technol. 29, 1542–1546(2011).
    [CrossRef]
  27. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
    [CrossRef]
  28. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26, 73–78 (2008).
    [CrossRef]
  29. M. Wegmuller, S. Demma, C. Vinegoni, and N. Gisin, “Emulator of first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14, 630–632 (2002).
    [CrossRef]
  30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).
  31. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
    [CrossRef]
  32. Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007).
    [CrossRef]
  33. D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
    [CrossRef]
  34. T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640  Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18, 3938–3945 (2010).
    [CrossRef]
  35. J. Gordon, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
    [CrossRef]
  36. H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” J. Lightwave Technol. 20, 368–378 (2002).
    [CrossRef]
  37. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
    [CrossRef]
  38. J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28  Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express 18, 25415–25421 (2010).
    [CrossRef]
  39. J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10, 1265–1267 (1998).
    [CrossRef]

2011 (2)

2010 (3)

2009 (1)

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[CrossRef]

2008 (3)

2007 (1)

Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007).
[CrossRef]

2006 (1)

2004 (2)

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004).
[CrossRef]

F. Buchali and H. Bülow, “Adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol. 22, 1116–1126 (2004).
[CrossRef]

2002 (5)

M. Wegmuller, S. Demma, C. Vinegoni, and N. Gisin, “Emulator of first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14, 630–632 (2002).
[CrossRef]

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

P. S. Westbrook, S. Hunsche, G. Raybon, T.-H. Her, and B. J. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193–1194(2002).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T.-H. Her, “Measurement of residual chromatic dispersion of a 40  Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” J. Lightwave Technol. 20, 368–378 (2002).
[CrossRef]

2000 (4)

J. Gordon, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28  Tbits/s−70  km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18, 941–951 (2000).
[CrossRef]

1998 (3)

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640  Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34, 907–908 (1998).
[CrossRef]

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10, 1265–1267 (1998).
[CrossRef]

1997 (1)

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

1994 (2)

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

T. Takahashi, T. Imai, and M. Aiki, “Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
[CrossRef]

1988 (1)

1986 (1)

J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60, 87–111 (1986).
[CrossRef]

Abakoumov, D.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Ahuja, A.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Aiki, M.

T. Takahashi, T. Imai, and M. Aiki, “Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
[CrossRef]

Andrekson, P.

H. Sunnerud, M. Westlund, J. Li, J. Hansryd, M. Karlsson, P.-O. Hedekvist, and P. Andrekson, “Long-term 160  Gb/s-TDM, RZ transmission with automatic PMD compensation and system monitoring using an optical sampling system,” in ECOC ’01: 27th European Conference on Optical Communication (IEEE, 2001), Vol. 6, pp. 18–19.

Andrekson, P. A.

Bao, X.

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10, 1265–1267 (1998).
[CrossRef]

Baxter, G.

Bayvel, P.

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Transmission of 42.8  Gbit/s Polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation,” in OFC/NFOEC 2007: Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), pp. 1–3.

Bolger, J. A.

Brasier, O.

Brentel, J.

Brimacombe, B.

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Buchali, F.

Bulla, D. A.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
[CrossRef]

J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28  Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express 18, 25415–25421 (2010).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[CrossRef]

Bulla, D. A. P.

Bülow, H.

Burrows, E. C.

Cameron, J.

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10, 1265–1267 (1998).
[CrossRef]

Carroll, J. E.

J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60, 87–111 (1986).
[CrossRef]

Centanni, J. C.

Charlet, G.

Chen, L.

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10, 1265–1267 (1998).
[CrossRef]

Choi, D.-Y.

J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28  Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express 18, 25415–25421 (2010).
[CrossRef]

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640  Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18, 3938–3945 (2010).
[CrossRef]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[CrossRef]

Christen, L.

Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007).
[CrossRef]

Cole, M.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

Curtis, J. P.

J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60, 87–111 (1986).
[CrossRef]

Demma, S.

M. Wegmuller, S. Demma, C. Vinegoni, and N. Gisin, “Emulator of first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14, 630–632 (2002).
[CrossRef]

DiGiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Doerr, C. R.

Dreyer, K.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Durkin, M.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

Eggleton, B.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Eggleton, B. J.

Y. Paquot, J. Schröder, J. Van Erps, T. D. Vo, M. D. Pelusi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal,” Opt. Express 19, 25512–25520 (2011).
[CrossRef]

J. Schröder, O. Brasier, J. Van Erps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightwave Technol. 29, 1542–1546(2011).
[CrossRef]

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640  Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18, 3938–3945 (2010).
[CrossRef]

J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28  Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express 18, 25415–25421 (2010).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[CrossRef]

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26, 73–78 (2008).
[CrossRef]

P. S. Westbrook, S. Hunsche, G. Raybon, T.-H. Her, and B. J. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193–1194(2002).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T.-H. Her, “Measurement of residual chromatic dispersion of a 40  Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

Essiambre, R.-J.

Fishman, D. A.

F. Heismann, D. A. Fishman, and D. L. Wilson, “Automatic compensation of first-order polarization mode dispersion in a 10  Gb/s transmission system,” in 24th European Conference on Optical Communication (IEEE, 1998), Vol. 1, pp. 529–530.

Fishteyn, M.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

Frisken, S.

Gavioli, G.

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Transmission of 42.8  Gbit/s Polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation,” in OFC/NFOEC 2007: Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), pp. 1–3.

Gisin, N.

M. Wegmuller, S. Demma, C. Vinegoni, and N. Gisin, “Emulator of first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14, 630–632 (2002).
[CrossRef]

Gnauck, A. H.

Gordon, J.

J. Gordon, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
[CrossRef]

Hagimoto, K.

A. Sano, T. Kataoka, M. Tomizawa, K. Hagimoto, K. Sato, K. Wakita, and K. Kato, “Automatic dispersion equalization by monitoring extracted-clock power level in a 40  Gbit/s, 200 km transmission line,” in ECOC ’96: 22nd European Conference on Optical Communication (IEEE, 1996), Vol. 2, pp. 207–210.

Hamp, M. J.

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Hansryd, J.

H. Sunnerud, M. Westlund, J. Li, J. Hansryd, M. Karlsson, P.-O. Hedekvist, and P. Andrekson, “Long-term 160  Gb/s-TDM, RZ transmission with automatic PMD compensation and system monitoring using an optical sampling system,” in ECOC ’01: 27th European Conference on Optical Communication (IEEE, 2001), Vol. 6, pp. 18–19.

Hedekvist, P.-O.

H. Sunnerud, M. Westlund, J. Li, J. Hansryd, M. Karlsson, P.-O. Hedekvist, and P. Andrekson, “Long-term 160  Gb/s-TDM, RZ transmission with automatic PMD compensation and system monitoring using an optical sampling system,” in ECOC ’01: 27th European Conference on Optical Communication (IEEE, 2001), Vol. 6, pp. 18–19.

Heismann, F.

F. Heismann, D. A. Fishman, and D. L. Wilson, “Automatic compensation of first-order polarization mode dispersion in a 10  Gb/s transmission system,” in 24th European Conference on Optical Communication (IEEE, 1998), Vol. 1, pp. 529–530.

Her, T.-H.

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T.-H. Her, “Measurement of residual chromatic dispersion of a 40  Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

P. S. Westbrook, S. Hunsche, G. Raybon, T.-H. Her, and B. J. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193–1194(2002).
[CrossRef]

Heritage, J. P.

Higuma, K.

Hu, J.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370×294  Gb/s) PDM-128QAM-OFDM transmission over 3×55  km SSMF using pilot-based phase noise mitigation” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

Huang, M.-F.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370×294  Gb/s) PDM-128QAM-OFDM transmission over 3×55  km SSMF using pilot-based phase noise mitigation” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

Huang, Y.-K.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370×294  Gb/s) PDM-128QAM-OFDM transmission over 3×55  km SSMF using pilot-based phase noise mitigation” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

Hubbard, M.

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Hunsche, S.

P. S. Westbrook, S. Hunsche, G. Raybon, T.-H. Her, and B. J. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193–1194(2002).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T.-H. Her, “Measurement of residual chromatic dispersion of a 40  Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

Ibsen, M.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

Imai, T.

T. Takahashi, T. Imai, and M. Aiki, “Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
[CrossRef]

Inoue, T.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[CrossRef]

Ip, E.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370×294  Gb/s) PDM-128QAM-OFDM transmission over 3×55  km SSMF using pilot-based phase noise mitigation” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

Karlsson, M.

H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” J. Lightwave Technol. 20, 368–378 (2002).
[CrossRef]

M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18, 941–951 (2000).
[CrossRef]

H. Sunnerud, M. Westlund, J. Li, J. Hansryd, M. Karlsson, P.-O. Hedekvist, and P. Andrekson, “Long-term 160  Gb/s-TDM, RZ transmission with automatic PMD compensation and system monitoring using an optical sampling system,” in ECOC ’01: 27th European Conference on Optical Communication (IEEE, 2001), Vol. 6, pp. 18–19.

Kashyap, R.

Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007).
[CrossRef]

Kataoka, T.

A. Sano, T. Kataoka, M. Tomizawa, K. Hagimoto, K. Sato, K. Wakita, and K. Kato, “Automatic dispersion equalization by monitoring extracted-clock power level in a 40  Gbit/s, 200 km transmission line,” in ECOC ’96: 22nd European Conference on Optical Communication (IEEE, 1996), Vol. 2, pp. 207–210.

Kato, K.

A. Sano, T. Kataoka, M. Tomizawa, K. Hagimoto, K. Sato, K. Wakita, and K. Kato, “Automatic dispersion equalization by monitoring extracted-clock power level in a 40  Gbit/s, 200 km transmission line,” in ECOC ’96: 22nd European Conference on Optical Communication (IEEE, 1996), Vol. 2, pp. 207–210.

Kawanishi, S.

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

Kawanishi, T.

Killey, R. I.

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Transmission of 42.8  Gbit/s Polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation,” in OFC/NFOEC 2007: Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), pp. 1–3.

Kirschner, E. M.

Laming, R.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[CrossRef]

Lehmann, G.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004).
[CrossRef]

Li, J.

H. Sunnerud, M. Westlund, J. Li, J. Hansryd, M. Karlsson, P.-O. Hedekvist, and P. Andrekson, “Long-term 160  Gb/s-TDM, RZ transmission with automatic PMD compensation and system monitoring using an optical sampling system,” in ECOC ’01: 27th European Conference on Optical Communication (IEEE, 2001), Vol. 6, pp. 18–19.

Lizé, Y. K.

Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007).
[CrossRef]

Luan, F.

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640  Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18, 3938–3945 (2010).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[CrossRef]

Ludwig, R.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2  Tb/s TDM-data capacity using 16-QAM and coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.

Luther-Davies, B.

Madden, S.

Madden, S. J.

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640  Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18, 3938–3945 (2010).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[CrossRef]

Mikkelsen, B.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Nakazawa, M.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28  Tbits/s−70  km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640  Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34, 907–908 (1998).
[CrossRef]

Namiki, S.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[CrossRef]

Nielsen, T. N.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Nölle, M.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2  Tb/s TDM-data capacity using 16-QAM and coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.

Nuccio, S.

Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007).
[CrossRef]

Palushani, E.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2  Tb/s TDM-data capacity using 16-QAM and coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.

Paquot, Y.

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[CrossRef]

Pelusi, M. D.

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Poole, S.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

Qian, D.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370×294  Gb/s) PDM-128QAM-OFDM transmission over 3×55  km SSMF using pilot-based phase noise mitigation” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

Raybon, G.

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T.-H. Her, “Measurement of residual chromatic dispersion of a 40  Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

P. S. Westbrook, S. Hunsche, G. Raybon, T.-H. Her, and B. J. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193–1194(2002).
[CrossRef]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Reyes, P.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004).
[CrossRef]

Richter, T.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2  Tb/s TDM-data capacity using 16-QAM and coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.

Rode, A.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
[CrossRef]

Roelens, M. A. F.

Rogers, J. A.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Rohde, H.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004).
[CrossRef]

Saghari, P.

Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007).
[CrossRef]

Sahara, A.

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640  Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34, 907–908 (1998).
[CrossRef]

Sakamoto, T.

Samuelsson, R.

Sano, A.

A. Sano, T. Kataoka, M. Tomizawa, K. Hagimoto, K. Sato, K. Wakita, and K. Kato, “Automatic dispersion equalization by monitoring extracted-clock power level in a 40  Gbit/s, 200 km transmission line,” in ECOC ’96: 22nd European Conference on Optical Communication (IEEE, 1996), Vol. 2, pp. 207–210.

Sato, K.

A. Sano, T. Kataoka, M. Tomizawa, K. Hagimoto, K. Sato, K. Wakita, and K. Kato, “Automatic dispersion equalization by monitoring extracted-clock power level in a 40  Gbit/s, 200 km transmission line,” in ECOC ’96: 22nd European Conference on Optical Communication (IEEE, 1996), Vol. 2, pp. 207–210.

Savory, S. J.

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Transmission of 42.8  Gbit/s Polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation,” in OFC/NFOEC 2007: Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), pp. 1–3.

Schairer, W.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004).
[CrossRef]

Schmidt-Langhorst, C.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2  Tb/s TDM-data capacity using 16-QAM and coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.

Schröder, J.

Schubert, C.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2  Tb/s TDM-data capacity using 16-QAM and coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.

Shake, I.

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

Shao, Y.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370×294  Gb/s) PDM-128QAM-OFDM transmission over 3×55  km SSMF using pilot-based phase noise mitigation” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

Stears, J.

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10, 1265–1267 (1998).
[CrossRef]

Stulz, S.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Sunnerud, H.

H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” J. Lightwave Technol. 20, 368–378 (2002).
[CrossRef]

H. Sunnerud, M. Westlund, J. Li, J. Hansryd, M. Karlsson, P.-O. Hedekvist, and P. Andrekson, “Long-term 160  Gb/s-TDM, RZ transmission with automatic PMD compensation and system monitoring using an optical sampling system,” in ECOC ’01: 27th European Conference on Optical Communication (IEEE, 2001), Vol. 6, pp. 18–19.

Takahashi, T.

T. Takahashi, T. Imai, and M. Aiki, “Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
[CrossRef]

Takara, W.

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28  Tbits/s−70  km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

Tomizawa, M.

A. Sano, T. Kataoka, M. Tomizawa, K. Hagimoto, K. Sato, K. Wakita, and K. Kato, “Automatic dispersion equalization by monitoring extracted-clock power level in a 40  Gbit/s, 200 km transmission line,” in ECOC ’96: 22nd European Conference on Optical Communication (IEEE, 1996), Vol. 2, pp. 207–210.

Tran, P.

Van Erps, J.

Vengsarkar, A. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

Vinegoni, C.

M. Wegmuller, S. Demma, C. Vinegoni, and N. Gisin, “Emulator of first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14, 630–632 (2002).
[CrossRef]

Vo, T. D.

Wakita, K.

A. Sano, T. Kataoka, M. Tomizawa, K. Hagimoto, K. Sato, K. Wakita, and K. Kato, “Automatic dispersion equalization by monitoring extracted-clock power level in a 40  Gbit/s, 200 km transmission line,” in ECOC ’96: 22nd European Conference on Optical Communication (IEEE, 1996), Vol. 2, pp. 207–210.

Wang, R.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
[CrossRef]

Wang, T.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370×294  Gb/s) PDM-128QAM-OFDM transmission over 3×55  km SSMF using pilot-based phase noise mitigation” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

Wegmuller, M.

M. Wegmuller, S. Demma, C. Vinegoni, and N. Gisin, “Emulator of first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14, 630–632 (2002).
[CrossRef]

Weiner, A. M.

Westbrook, P. S.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004).
[CrossRef]

P. S. Westbrook, S. Hunsche, G. Raybon, T.-H. Her, and B. J. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193–1194(2002).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T.-H. Her, “Measurement of residual chromatic dispersion of a 40  Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Westlund, M.

H. Sunnerud, M. Westlund, J. Li, J. Hansryd, M. Karlsson, P.-O. Hedekvist, and P. Andrekson, “Long-term 160  Gb/s-TDM, RZ transmission with automatic PMD compensation and system monitoring using an optical sampling system,” in ECOC ’01: 27th European Conference on Optical Communication (IEEE, 2001), Vol. 6, pp. 18–19.

Wielandy, S.

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004).
[CrossRef]

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Willner, A. E.

Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007).
[CrossRef]

Wilson, D. L.

F. Heismann, D. A. Fishman, and D. L. Wilson, “Automatic compensation of first-order polarization mode dispersion in a 10  Gb/s transmission system,” in 24th European Conference on Optical Communication (IEEE, 1998), Vol. 1, pp. 529–530.

Winzer, P. J.

Wright, J.

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Xie, C.

Yamabayashi, Y.

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

Yamada, E.

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640  Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34, 907–908 (1998).
[CrossRef]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28  Tbits/s−70  km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640  Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34, 907–908 (1998).
[CrossRef]

Yang, J.-Y.

Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007).
[CrossRef]

Yoshida, E.

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640  Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34, 907–908 (1998).
[CrossRef]

Electron. Lett. (7)

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640  Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34, 907–908 (1998).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28  Tbits/s−70  km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

S. Wielandy, P. S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160  Gbits/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690–691 (2004).
[CrossRef]

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

T. Takahashi, T. Imai, and M. Aiki, “Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994).
[CrossRef]

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

P. S. Westbrook, S. Hunsche, G. Raybon, T.-H. Her, and B. J. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193–1194(2002).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T.-H. Her, “Measurement of residual chromatic dispersion of a 40  Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Y. K. Lizé, L. Christen, J.-Y. Yang, P. Saghari, S. Nuccio, A. E. Willner, and R. Kashyap, “Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission,” IEEE Photon. Technol. Lett. 19, 2006–2008 (2007).
[CrossRef]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
[CrossRef]

M. Wegmuller, S. Demma, C. Vinegoni, and N. Gisin, “Emulator of first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14, 630–632 (2002).
[CrossRef]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160  Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

J. Cameron, L. Chen, X. Bao, and J. Stears, “Time evolution of polarization mode dispersion in optical fibers,” IEEE Photon. Technol. Lett. 10, 1265–1267 (1998).
[CrossRef]

Int. J. Electron. (1)

J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60, 87–111 (1986).
[CrossRef]

J. Lightwave Technol. (8)

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26, 73–78 (2008).
[CrossRef]

F. Buchali and H. Bülow, “Adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol. 22, 1116–1126 (2004).
[CrossRef]

J. Schröder, O. Brasier, J. Van Erps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightwave Technol. 29, 1542–1546(2011).
[CrossRef]

H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” J. Lightwave Technol. 20, 368–378 (2002).
[CrossRef]

M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18, 941–951 (2000).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6  Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26, 79–84 (2008).
[CrossRef]

P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711–4728 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[CrossRef]

Nat. Photonics (1)

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[CrossRef]

Opt. Express (3)

Proc. Natl. Acad. Sci. USA (1)

J. Gordon, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
[CrossRef]

Other (9)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Transmission of 42.8  Gbit/s Polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation,” in OFC/NFOEC 2007: Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), pp. 1–3.

A. Sano, T. Kataoka, M. Tomizawa, K. Hagimoto, K. Sato, K. Wakita, and K. Kato, “Automatic dispersion equalization by monitoring extracted-clock power level in a 40  Gbit/s, 200 km transmission line,” in ECOC ’96: 22nd European Conference on Optical Communication (IEEE, 1996), Vol. 2, pp. 207–210.

F. Heismann, D. A. Fishman, and D. L. Wilson, “Automatic compensation of first-order polarization mode dispersion in a 10  Gb/s transmission system,” in 24th European Conference on Optical Communication (IEEE, 1998), Vol. 1, pp. 529–530.

I. P. Kaminow, T. Li, and A. E. Willner, eds., Optical Fiber Telecommunications V, A: Components and Subsystems, 5th ed. (Academic, 2008).

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7  Tb/s (370×294  Gb/s) PDM-128QAM-OFDM transmission over 3×55  km SSMF using pilot-based phase noise mitigation” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

H. Sunnerud, M. Westlund, J. Li, J. Hansryd, M. Karlsson, P.-O. Hedekvist, and P. Andrekson, “Long-term 160  Gb/s-TDM, RZ transmission with automatic PMD compensation and system monitoring using an optical sampling system,” in ECOC ’01: 27th European Conference on Optical Communication (IEEE, 2001), Vol. 6, pp. 18–19.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2  Tb/s TDM-data capacity using 16-QAM and coherent detection,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Summary of the compensation strategy. The transmitter is followed by a link emulating both the initial bias and the temporal drifts in GVD and DGD. The automatic compensation system is inserted before the receiver to cancel those impairments using the signal received from the all-optical RF spectrum analyzer (the signal monitor). The figure illustrates how the link distorts the data pulses and this is detected by the signal monitor, which activates the DGD and GVD compensators. GVD causes pulse broadening and DGD pulse splitting, and these both impair the RF spectrum by decreasing the 640 GHz tone (lower trace, bottom).

Fig. 2.
Fig. 2.

Flow diagram of the optimization algorithm. Detection of a drop in the tone power activates the optimization process. DGD and GVD are successively considered in a loop modifying the active parameter step by step so as to maximize the tone power.

Fig. 3.
Fig. 3.

Main building blocks of the compensation experiment: successively, a 640 Gb / s OTDM transmitter, a link emulating DGD and GVD fluctuations with a DGD emulator and an SPS, a DGD compensator, a GVD compensator (SPS), and an RF spectrum analyzer used as broad-bandwidth signal monitor. Feedback from the monitor to the compensators enables automatic compensation.

Fig. 4.
Fig. 4.

Details of the transmitter. The pulse train from a mode-locked laser is compressed with two nonlinear compression stages, encoded with a Mach–Zehnder modulator driven by PRBS data, and time-interleaved 16 times using interferometric multiplexing stages. The mode-locked laser and the PRBS data generator were synchronized to a unique electronic clock. The lower panel shows an eye diagram of the signal obtained using an optical sampling oscilloscope.

Fig. 5.
Fig. 5.

RF spectrum of the signal as measured with terahertz bandwidth by copropagating it with a cw probe at a different wavelength inside a highly nonlinear chalcogenide waveguide. Cross-phase modulation causes spectral broadening in the probe, which reflects the RF spectrum of the signal. The tone power of the spectrum corresponding to the carrier frequency was extracted with a BPF.

Fig. 6.
Fig. 6.

Evolution of the carrier tone power as a function of DGD (left and right panels), suggesting the choice of that parameter as signal-quality indicator. Indeed, an increase of the DGD impairment (as visualized on the series of eye diagrams) causes a drop of the tone power within a range of more than 1 ps around the zero DGD state. The RF spectra presented on the left are shifted upward by multiples of 20 dB for ease of viewing. The actual spectra have an absolute power aligned with the lower graph.

Fig. 7.
Fig. 7.

Use of PBSs to split and recombine the two orthogonal polarization states. One arm was directed straight to the second PBS by a length of SMF, and the length of the other was controlled with a programmable delay line. The degradation of the RF spectrum related to a change of DGD by the emulator was recovered by applying an opposite DGD value using the compensator.

Fig. 8.
Fig. 8.

Middle: histogram of the DGD emulated by the link (dashed line) and the DGD applied by the compensator in the opposite direction (solid line). Bottom: histogram of the tone power. The vertical dashed lines show where the DGD changes have been applied. Top: a series of eye diagrams confirming the compensation of the DGD impairment on the signal.

Fig. 9.
Fig. 9.

Top: histogram of the DGD emulated by the link (dashed line) and the DGD applied by the compensator in the opposite direction (solid line). Middle: histogram of the GVD emulated by the link (dashed line) and the GVD applied by the compensator in the opposite direction (solid line). Bottom: histogram of the tone power. The vertical dashed lines show where the DGD and GVD changes have been applied.

Fig. 10.
Fig. 10.

Histograms of the tone power while monitoring a system subject to sharp DGD changes. Left: the automatic DGD compensation system is turned off; the degraded signal is not recovered. Middle: the automatic DGD compensation system is turned on; the tone power quickly recovers its maximum value. Right: the DGD compensation system is on, but the DGD change applied is too high to allow for stable compensation; the system is pushed to a local maximum.

Metrics