Abstract

Prior studies on converting three-dimensional (3D) range data into regular two-dimensional (2D) color images using virtual fringe projection techniques showed great promise for 3D range data compression, yet they require resampling the raw scanned data. Due to this resampling, the natural 3D range data are altered and sampling error may be introduced. This paper presents a method that compresses the raw sampling points without modifications. Instead of directly utilizing the 3D recovered shape, this method compresses the s map, the scale factor of a perspective projection from a 3D space to a 2D space. The s map is then converted to 2D color image for further compression with existing 2D image compression techniques. By this means, 3D data obtained by 3D range scanners can be compressed into 2D images without any resampling, providing a natural and more accurate method of compressing 3D range data. Experimental results verified the success of the proposed method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
    [CrossRef]
  2. G. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon. 3, 128–160 (2011).
    [CrossRef]
  3. N. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on GPU,” Opt. Lasers Eng. 50, 280–286 (2012).
    [CrossRef]
  4. N. Karpinsky and S. Zhang, “Composite phase-shifting algorithm for three-dimensional shape compression,” Opt. Eng. 49, 063604 (2010).
    [CrossRef]
  5. S. Gumhold, Z. Kami, M. Isenburg, and H.-P. Seidel, “Predictive point-cloud compression,” in Proceedings of ACM SIGGRAPH 2005 Sketches (ACM, 2005) p. 137.
  6. B. Merry, P. Marais, and J. Gain, “Compression of dense and regular point clouds,” Comput. Graph. Forum 25, 709–716 (2006).
    [CrossRef]
  7. R. Schnabel and R. Klein, “Octree-based point-cloud compression,” in Proceedings of the Eurographics Symposium on Point-Based Graphics (Eurographics, 2006), pp. 111–120.
  8. A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec, “Achieving eye contact in a one-to-many 3D video teleconferencing system,” in SIGGRAPH ’09(ACM, 2009).
  9. X. Gu, S. Zhang, L. Zhang, P. Huang, R. Martin, and S.-T. Yau, “Holoimages,” in Proceedings of the ACM Symposium on Solid and Physical Modeling (ACM, 2006), pp. 129–138.
  10. Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Lasers Eng. 50, 844–849 (2012).
    [CrossRef]
  11. N. Karpinsky and S. Zhang, “Generalizing holovideo to H.264,” Proc. SPIE 8290, 829012 (2012).
    [CrossRef]
  12. S. Zhang, “Three-dimensional range data compression using computer graphics rendering pipeline,” Appl. Opt. 51, 4058–4064 (2012).
    [CrossRef]
  13. S. Zhang, L. Ekstrand, T. Grieve, L. S. Chumbley, and M. Morris, “Three-dimensional data processing with advanced computer graphics tools,” Proc. SPIE 8493, 84931(2012).
    [CrossRef]
  14. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “State of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
    [CrossRef]
  15. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
    [CrossRef]
  16. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
    [CrossRef]
  17. S. Zhang and S.-T. Yau, “High-resolution, real-time 3-D absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14, 2644–2649 (2006).
    [CrossRef]
  18. S. Zhang, “Digital multiple-wavelength phase-shifting algorithm,” Proc. SPIE 7432, 74320N (2009).
    [CrossRef]
  19. J. Vargas and J. A. Quiroga, “Novel multiresolution approach for an adaptive structured light system,” Opt. Eng. 47, 023601 (2008).
    [CrossRef]
  20. J. Vargas and J. A. Quiroga, “Multiresolution approach based on projection matrices,” Appl. Opt. 48, 1295–1302 (2009).
    [CrossRef]

2012

N. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on GPU,” Opt. Lasers Eng. 50, 280–286 (2012).
[CrossRef]

Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Lasers Eng. 50, 844–849 (2012).
[CrossRef]

N. Karpinsky and S. Zhang, “Generalizing holovideo to H.264,” Proc. SPIE 8290, 829012 (2012).
[CrossRef]

S. Zhang, “Three-dimensional range data compression using computer graphics rendering pipeline,” Appl. Opt. 51, 4058–4064 (2012).
[CrossRef]

S. Zhang, L. Ekstrand, T. Grieve, L. S. Chumbley, and M. Morris, “Three-dimensional data processing with advanced computer graphics tools,” Proc. SPIE 8493, 84931(2012).
[CrossRef]

2011

2010

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

N. Karpinsky and S. Zhang, “Composite phase-shifting algorithm for three-dimensional shape compression,” Opt. Eng. 49, 063604 (2010).
[CrossRef]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “State of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[CrossRef]

2009

S. Zhang, “Digital multiple-wavelength phase-shifting algorithm,” Proc. SPIE 7432, 74320N (2009).
[CrossRef]

J. Vargas and J. A. Quiroga, “Multiresolution approach based on projection matrices,” Appl. Opt. 48, 1295–1302 (2009).
[CrossRef]

2008

J. Vargas and J. A. Quiroga, “Novel multiresolution approach for an adaptive structured light system,” Opt. Eng. 47, 023601 (2008).
[CrossRef]

2006

S. Zhang and S.-T. Yau, “High-resolution, real-time 3-D absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14, 2644–2649 (2006).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

B. Merry, P. Marais, and J. Gain, “Compression of dense and regular point clouds,” Comput. Graph. Forum 25, 709–716 (2006).
[CrossRef]

2000

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
[CrossRef]

Bolas, M.

A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec, “Achieving eye contact in a one-to-many 3D video teleconferencing system,” in SIGGRAPH ’09(ACM, 2009).

Busch, J.

A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec, “Achieving eye contact in a one-to-many 3D video teleconferencing system,” in SIGGRAPH ’09(ACM, 2009).

Chumbley, L. S.

S. Zhang, L. Ekstrand, T. Grieve, L. S. Chumbley, and M. Morris, “Three-dimensional data processing with advanced computer graphics tools,” Proc. SPIE 8493, 84931(2012).
[CrossRef]

Debevec, P.

A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec, “Achieving eye contact in a one-to-many 3D video teleconferencing system,” in SIGGRAPH ’09(ACM, 2009).

Ekstrand, L.

S. Zhang, L. Ekstrand, T. Grieve, L. S. Chumbley, and M. Morris, “Three-dimensional data processing with advanced computer graphics tools,” Proc. SPIE 8493, 84931(2012).
[CrossRef]

Fernandez, S.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “State of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[CrossRef]

Fyffe, G.

A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec, “Achieving eye contact in a one-to-many 3D video teleconferencing system,” in SIGGRAPH ’09(ACM, 2009).

Gain, J.

B. Merry, P. Marais, and J. Gain, “Compression of dense and regular point clouds,” Comput. Graph. Forum 25, 709–716 (2006).
[CrossRef]

Geng, G.

Grieve, T.

S. Zhang, L. Ekstrand, T. Grieve, L. S. Chumbley, and M. Morris, “Three-dimensional data processing with advanced computer graphics tools,” Proc. SPIE 8493, 84931(2012).
[CrossRef]

Gu, X.

X. Gu, S. Zhang, L. Zhang, P. Huang, R. Martin, and S.-T. Yau, “Holoimages,” in Proceedings of the ACM Symposium on Solid and Physical Modeling (ACM, 2006), pp. 129–138.

Gumhold, S.

S. Gumhold, Z. Kami, M. Isenburg, and H.-P. Seidel, “Predictive point-cloud compression,” in Proceedings of ACM SIGGRAPH 2005 Sketches (ACM, 2005) p. 137.

Hou, Z.

Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Lasers Eng. 50, 844–849 (2012).
[CrossRef]

Huang, P.

X. Gu, S. Zhang, L. Zhang, P. Huang, R. Martin, and S.-T. Yau, “Holoimages,” in Proceedings of the ACM Symposium on Solid and Physical Modeling (ACM, 2006), pp. 129–138.

Huang, P. S.

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

Isenburg, M.

S. Gumhold, Z. Kami, M. Isenburg, and H.-P. Seidel, “Predictive point-cloud compression,” in Proceedings of ACM SIGGRAPH 2005 Sketches (ACM, 2005) p. 137.

Jones, A.

A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec, “Achieving eye contact in a one-to-many 3D video teleconferencing system,” in SIGGRAPH ’09(ACM, 2009).

Kami, Z.

S. Gumhold, Z. Kami, M. Isenburg, and H.-P. Seidel, “Predictive point-cloud compression,” in Proceedings of ACM SIGGRAPH 2005 Sketches (ACM, 2005) p. 137.

Karpinsky, N.

N. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on GPU,” Opt. Lasers Eng. 50, 280–286 (2012).
[CrossRef]

N. Karpinsky and S. Zhang, “Generalizing holovideo to H.264,” Proc. SPIE 8290, 829012 (2012).
[CrossRef]

N. Karpinsky and S. Zhang, “Composite phase-shifting algorithm for three-dimensional shape compression,” Opt. Eng. 49, 063604 (2010).
[CrossRef]

Klein, R.

R. Schnabel and R. Klein, “Octree-based point-cloud compression,” in Proceedings of the Eurographics Symposium on Point-Based Graphics (Eurographics, 2006), pp. 111–120.

Lang, M.

A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec, “Achieving eye contact in a one-to-many 3D video teleconferencing system,” in SIGGRAPH ’09(ACM, 2009).

Llado, X.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “State of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[CrossRef]

Marais, P.

B. Merry, P. Marais, and J. Gain, “Compression of dense and regular point clouds,” Comput. Graph. Forum 25, 709–716 (2006).
[CrossRef]

Martin, R.

X. Gu, S. Zhang, L. Zhang, P. Huang, R. Martin, and S.-T. Yau, “Holoimages,” in Proceedings of the ACM Symposium on Solid and Physical Modeling (ACM, 2006), pp. 129–138.

McDowall, I.

A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec, “Achieving eye contact in a one-to-many 3D video teleconferencing system,” in SIGGRAPH ’09(ACM, 2009).

Merry, B.

B. Merry, P. Marais, and J. Gain, “Compression of dense and regular point clouds,” Comput. Graph. Forum 25, 709–716 (2006).
[CrossRef]

Morris, M.

S. Zhang, L. Ekstrand, T. Grieve, L. S. Chumbley, and M. Morris, “Three-dimensional data processing with advanced computer graphics tools,” Proc. SPIE 8493, 84931(2012).
[CrossRef]

Pribanic, T.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “State of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[CrossRef]

Quiroga, J. A.

J. Vargas and J. A. Quiroga, “Multiresolution approach based on projection matrices,” Appl. Opt. 48, 1295–1302 (2009).
[CrossRef]

J. Vargas and J. A. Quiroga, “Novel multiresolution approach for an adaptive structured light system,” Opt. Eng. 47, 023601 (2008).
[CrossRef]

Salvi, J.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “State of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[CrossRef]

Schnabel, R.

R. Schnabel and R. Klein, “Octree-based point-cloud compression,” in Proceedings of the Eurographics Symposium on Point-Based Graphics (Eurographics, 2006), pp. 111–120.

Seidel, H.-P.

S. Gumhold, Z. Kami, M. Isenburg, and H.-P. Seidel, “Predictive point-cloud compression,” in Proceedings of ACM SIGGRAPH 2005 Sketches (ACM, 2005) p. 137.

Su, X.

Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Lasers Eng. 50, 844–849 (2012).
[CrossRef]

Vargas, J.

J. Vargas and J. A. Quiroga, “Multiresolution approach based on projection matrices,” Appl. Opt. 48, 1295–1302 (2009).
[CrossRef]

J. Vargas and J. A. Quiroga, “Novel multiresolution approach for an adaptive structured light system,” Opt. Eng. 47, 023601 (2008).
[CrossRef]

Yau, S.-T.

S. Zhang and S.-T. Yau, “High-resolution, real-time 3-D absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14, 2644–2649 (2006).
[CrossRef]

X. Gu, S. Zhang, L. Zhang, P. Huang, R. Martin, and S.-T. Yau, “Holoimages,” in Proceedings of the ACM Symposium on Solid and Physical Modeling (ACM, 2006), pp. 129–138.

Yu, X.

A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec, “Achieving eye contact in a one-to-many 3D video teleconferencing system,” in SIGGRAPH ’09(ACM, 2009).

Zhang, L.

X. Gu, S. Zhang, L. Zhang, P. Huang, R. Martin, and S.-T. Yau, “Holoimages,” in Proceedings of the ACM Symposium on Solid and Physical Modeling (ACM, 2006), pp. 129–138.

Zhang, Q.

Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Lasers Eng. 50, 844–849 (2012).
[CrossRef]

Zhang, S.

N. Karpinsky and S. Zhang, “Generalizing holovideo to H.264,” Proc. SPIE 8290, 829012 (2012).
[CrossRef]

S. Zhang, “Three-dimensional range data compression using computer graphics rendering pipeline,” Appl. Opt. 51, 4058–4064 (2012).
[CrossRef]

S. Zhang, L. Ekstrand, T. Grieve, L. S. Chumbley, and M. Morris, “Three-dimensional data processing with advanced computer graphics tools,” Proc. SPIE 8493, 84931(2012).
[CrossRef]

N. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on GPU,” Opt. Lasers Eng. 50, 280–286 (2012).
[CrossRef]

N. Karpinsky and S. Zhang, “Composite phase-shifting algorithm for three-dimensional shape compression,” Opt. Eng. 49, 063604 (2010).
[CrossRef]

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

S. Zhang, “Digital multiple-wavelength phase-shifting algorithm,” Proc. SPIE 7432, 74320N (2009).
[CrossRef]

S. Zhang and S.-T. Yau, “High-resolution, real-time 3-D absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14, 2644–2649 (2006).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

X. Gu, S. Zhang, L. Zhang, P. Huang, R. Martin, and S.-T. Yau, “Holoimages,” in Proceedings of the ACM Symposium on Solid and Physical Modeling (ACM, 2006), pp. 129–138.

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

Comput. Graph. Forum

B. Merry, P. Marais, and J. Gain, “Compression of dense and regular point clouds,” Comput. Graph. Forum 25, 709–716 (2006).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
[CrossRef]

Opt. Eng.

N. Karpinsky and S. Zhang, “Composite phase-shifting algorithm for three-dimensional shape compression,” Opt. Eng. 49, 063604 (2010).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

J. Vargas and J. A. Quiroga, “Novel multiresolution approach for an adaptive structured light system,” Opt. Eng. 47, 023601 (2008).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Lasers Eng. 50, 844–849 (2012).
[CrossRef]

N. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on GPU,” Opt. Lasers Eng. 50, 280–286 (2012).
[CrossRef]

Pattern Recogn.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “State of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[CrossRef]

Proc. SPIE

S. Zhang, “Digital multiple-wavelength phase-shifting algorithm,” Proc. SPIE 7432, 74320N (2009).
[CrossRef]

N. Karpinsky and S. Zhang, “Generalizing holovideo to H.264,” Proc. SPIE 8290, 829012 (2012).
[CrossRef]

S. Zhang, L. Ekstrand, T. Grieve, L. S. Chumbley, and M. Morris, “Three-dimensional data processing with advanced computer graphics tools,” Proc. SPIE 8493, 84931(2012).
[CrossRef]

Other

S. Gumhold, Z. Kami, M. Isenburg, and H.-P. Seidel, “Predictive point-cloud compression,” in Proceedings of ACM SIGGRAPH 2005 Sketches (ACM, 2005) p. 137.

R. Schnabel and R. Klein, “Octree-based point-cloud compression,” in Proceedings of the Eurographics Symposium on Point-Based Graphics (Eurographics, 2006), pp. 111–120.

A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and P. Debevec, “Achieving eye contact in a one-to-many 3D video teleconferencing system,” in SIGGRAPH ’09(ACM, 2009).

X. Gu, S. Zhang, L. Zhang, P. Huang, R. Martin, and S.-T. Yau, “Holoimages,” in Proceedings of the ACM Symposium on Solid and Physical Modeling (ACM, 2006), pp. 129–138.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of a 3D shape measurement using a structured-light-based technique.

Fig. 2.
Fig. 2.

Experimental results of an ideal sphere. (a) Original 3D shape, (b) s map, (c) encoded 2D color image, and (d) recovered 3D shape.

Fig. 3.
Fig. 3.

Comparison between the recovered sphere and the original sphere. (a) z cross sections and (b) z difference (Δd=0.003mm).

Fig. 4.
Fig. 4.

Results of using different quality JPG file formats. (a)–(d) 3D results from JPG file with quality levels 12, 10, 8, and 6, respectively; (e)–(h) z differences for 320-th row of above results comparing with the original 3D data. Δd=0.008, 0.035, 0.063, and 0.192 mm for (e)–(h), respectively.

Fig. 5.
Fig. 5.

Experimental results of on a complex statue, David head. (a) Original 3D shape, (b) s map, (c) encoded 2D color image, and (d) overlapping original and recovered 3D results. Green color represents the original 3D shape and golden color represents the recovered 3D shape (Δd=0.022mm).

Fig. 6.
Fig. 6.

Experimental results of on a complex statue, David head. (a)–(d) Raw 3D results from JPG images at levels 12, 10, 8, 6, respectively, and Δd=0.046, 0.128, 0.215, and 0.371 mm, respectively; (e)–(h) cleaned 3D results from JPG images at levels 12, 10, 8, 6, respectively, and Δd=0.046, 0.079, 0.114, and 0.153 mm, respectively.

Tables (1)

Tables Icon

Table 1. Compression Ratios for Different Encoded Image Formats Versus 3D Mesh File Formatsa

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

s[uv1]=A[R,T][xyz1],
A=[αγu00βv0001].
Ir(i,j)=127.5+127.5sin(2πsn/P),
Ig(i,j)=127.5+127.5cos(2πsn/P),
Ib(i,j)=c·Fl(sn/P+0.5)+0.5c+0.5(c2)·cos[2π·Mod(sn,P)P1].
sn=(ssmin)/(smaxsmin),
ϕ(i,j)=tan1(Ir127.5Ig127.5).
k(i,j)=Fl(Ibc).
sn(i,j)=P[k(i,j)+ϕ(i,j)2π].
s=sn·(smaxsmin)+smin.
[xyz]=(A·R)1·s·[uv1]R1·T.
Δd=1Mi=1M(xixir)2+(yiyir)2+(zizir)2.

Metrics