Abstract

A design of an integrated widely tunable in-plane micro-optical mirror based on a hollow waveguide (HWG) consisting of a high index contrast grating (HCG) and a dielectric multilayer distributed Bragg reflector (DBR) is proposed. The in-plane mirror is formed in a variable air-core HWG by loading a SiO2 Bragg grating on the multilayer (DBR) mirror. Ultrawide tuning of 161 and 150 nm in Bragg wavelengths of TE and TM mode, respectively are reported in simulation with a simple tuning scheme and a single tuning parameter of variable air core. The presence of HCG in the proposed design causes a reduction from 88 nm (for DBR–DBR) to 48 nm (for HCG–DBR) in the 3 dB reflection-bandwidth of the proposed in-plane mirror. Also, a four-time reduction in the difference in the reflectivity of the Bragg wavelengths of TE and TM modes is reported because of the introduction of HCG into the hollow waveguide. The reflections of orthogonal polarizations and hence the polarization characteristics of the in-plane mirror are controlled by the combined effect of HCG and DBR.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
    [CrossRef]
  2. Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic devices,” Conference on Lasers and Electro Optics (CLEO) (IEEE, 2012), paper CTu21.4.
  3. A. Frenkel and C. Lin, “Inline tunable etalon filter for optical channel selection in high density wavelength division multiplexed fibre systems,” Electron. Lett. 24, 159–160 (1988).
    [CrossRef]
  4. Y. Tohmori, Y. Suematsu, Y. Tushima, and S. Arai, “Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in distributed Bragg reflector,” Electron. Lett. 19, 656–657 (1983).
    [CrossRef]
  5. http://www.telecomsmarketresearch.com/research/TMAAARXT-New-Markets-for-Telecom-and-Datacom-Lasers-2009-to-2013.shtml .
  6. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
    [CrossRef]
  7. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000).
    [CrossRef]
  8. M.-C. Amann, S. Illek, C. Schanen, and W. Thulke, “Tunable twin-guide laser: a novel laser diode with improved tuning performance,”Appl. Phys. Lett. 54, 2532–2534 (1989).
    [CrossRef]
  9. T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express 17, 14063–14068 (2009).
    [CrossRef]
  10. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
    [CrossRef]
  11. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
    [CrossRef]
  12. T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
    [CrossRef]
  13. M. Ishikawa, T. Miura, A. Matsutani, and F. Koyama, “Design and fabrication of grating demultiplexer using hollow optical waveguide,” Jpn. J. Appl. Phys. 43, L5761–L5763 (2004).
    [CrossRef]
  14. Y. Sakurai, A. Matsutani, and F. Koyama, “Tunable stop-band hollow waveguide Bragg reflector with tapered air-core for adaptive dispersion-compensation,” Appl. Phys. Lett. 88, 121103 (2006).
    [CrossRef]
  15. Y. Sakurai, Y. Yokota, A. Matsutani, and F. Koyama, “Tunable hollow waveguide Bragg grating with low-temperature dependence,” Appl. Phys. Lett. 86, 071111 (2005).
    [CrossRef]
  16. Y. Sakurai and F. Koyama, “Tunable hollow waveguide distributed Bragg reflectors with variable air core,” Opt. Express 12, 2851–2856 (2004).
    [CrossRef]
  17. M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide,” Appl. Phys. Lett. 94, 061112 (2009).
    [CrossRef]
  18. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultrawide birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34, 1252–1254 (2009).
    [CrossRef]
  19. H. Yamakawa and F. Koyama, “Hybrid-integrated tunable hollow waveguide DBR laser,” European Conference on Optical Communications (ECOC 2006) (IEEE, 2006), paper We3.P.54.
  20. H. Yamakawa and F. Koyama, “Athermal GaInAsP/InP semiconductor laser using hollow waveguide distributed Bragg reflector,” 12th Microoptics Conference (MOC2007), Seoul, Korea, 11–14 September (2006), paper A-2.
  21. T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
    [CrossRef]
  22. M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, and C. J. Chang-Hasnain, “Low birefringence and 2-D optical confinement of Hollow waveguide with distributed Bragg reflector and high index contrast grating,” IEEE Photon. J. 1, 135–143 (2009).
    [CrossRef]
  23. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17, 1508–1513 (2009).
    [CrossRef]
  24. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760–1773 (1997).
    [CrossRef]
  25. F. Prudenzano, L. Mescia, T. Palmisano, M. Surico, M. De Sario, and G. C. Righini, “Optimization of pump absorption in MOF lasers via multi-long-period gratings: design strategies,” Appl. Opt. 51, 1420–1430 (2012).
    [CrossRef]
  26. M. Kumar, “Polarization insensitive hollow optical waveguide,” Opt. Commun. 285, 2360–2362 (2012).
    [CrossRef]

2012 (2)

2009 (6)

M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, and C. J. Chang-Hasnain, “Low birefringence and 2-D optical confinement of Hollow waveguide with distributed Bragg reflector and high index contrast grating,” IEEE Photon. J. 1, 135–143 (2009).
[CrossRef]

Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17, 1508–1513 (2009).
[CrossRef]

M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide,” Appl. Phys. Lett. 94, 061112 (2009).
[CrossRef]

M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultrawide birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34, 1252–1254 (2009).
[CrossRef]

T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express 17, 14063–14068 (2009).
[CrossRef]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[CrossRef]

2008 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

2006 (1)

Y. Sakurai, A. Matsutani, and F. Koyama, “Tunable stop-band hollow waveguide Bragg reflector with tapered air-core for adaptive dispersion-compensation,” Appl. Phys. Lett. 88, 121103 (2006).
[CrossRef]

2005 (1)

Y. Sakurai, Y. Yokota, A. Matsutani, and F. Koyama, “Tunable hollow waveguide Bragg grating with low-temperature dependence,” Appl. Phys. Lett. 86, 071111 (2005).
[CrossRef]

2004 (2)

Y. Sakurai and F. Koyama, “Tunable hollow waveguide distributed Bragg reflectors with variable air core,” Opt. Express 12, 2851–2856 (2004).
[CrossRef]

M. Ishikawa, T. Miura, A. Matsutani, and F. Koyama, “Design and fabrication of grating demultiplexer using hollow optical waveguide,” Jpn. J. Appl. Phys. 43, L5761–L5763 (2004).
[CrossRef]

2003 (1)

T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
[CrossRef]

2001 (1)

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[CrossRef]

2000 (2)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000).
[CrossRef]

1997 (1)

1990 (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

1989 (1)

M.-C. Amann, S. Illek, C. Schanen, and W. Thulke, “Tunable twin-guide laser: a novel laser diode with improved tuning performance,”Appl. Phys. Lett. 54, 2532–2534 (1989).
[CrossRef]

1988 (1)

A. Frenkel and C. Lin, “Inline tunable etalon filter for optical channel selection in high density wavelength division multiplexed fibre systems,” Electron. Lett. 24, 159–160 (1988).
[CrossRef]

1983 (1)

Y. Tohmori, Y. Suematsu, Y. Tushima, and S. Arai, “Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in distributed Bragg reflector,” Electron. Lett. 19, 656–657 (1983).
[CrossRef]

Amann, M.-C.

M.-C. Amann, S. Illek, C. Schanen, and W. Thulke, “Tunable twin-guide laser: a novel laser diode with improved tuning performance,”Appl. Phys. Lett. 54, 2532–2534 (1989).
[CrossRef]

Aoki, Y.

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[CrossRef]

Arai, S.

Y. Tohmori, Y. Suematsu, Y. Tushima, and S. Arai, “Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in distributed Bragg reflector,” Electron. Lett. 19, 656–657 (1983).
[CrossRef]

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

Chang-Hasnain, C. J.

M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, and C. J. Chang-Hasnain, “Low birefringence and 2-D optical confinement of Hollow waveguide with distributed Bragg reflector and high index contrast grating,” IEEE Photon. J. 1, 135–143 (2009).
[CrossRef]

Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17, 1508–1513 (2009).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000).
[CrossRef]

Chase, C.

M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, and C. J. Chang-Hasnain, “Low birefringence and 2-D optical confinement of Hollow waveguide with distributed Bragg reflector and high index contrast grating,” IEEE Photon. J. 1, 135–143 (2009).
[CrossRef]

Chen, Y.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic devices,” Conference on Lasers and Electro Optics (CLEO) (IEEE, 2012), paper CTu21.4.

Chu, T.

Coldren, L. A.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[CrossRef]

De Sario, M.

Erdogan, T.

Frenkel, A.

A. Frenkel and C. Lin, “Inline tunable etalon filter for optical channel selection in high density wavelength division multiplexed fibre systems,” Electron. Lett. 24, 159–160 (1988).
[CrossRef]

Fujioka, N.

Hu, Q.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Iga, K.

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[CrossRef]

Illek, S.

M.-C. Amann, S. Illek, C. Schanen, and W. Thulke, “Tunable twin-guide laser: a novel laser diode with improved tuning performance,”Appl. Phys. Lett. 54, 2532–2534 (1989).
[CrossRef]

Ishikawa, M.

M. Ishikawa, T. Miura, A. Matsutani, and F. Koyama, “Design and fabrication of grating demultiplexer using hollow optical waveguide,” Jpn. J. Appl. Phys. 43, L5761–L5763 (2004).
[CrossRef]

Ishizaka, M.

Karagodsky, V.

Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17, 1508–1513 (2009).
[CrossRef]

M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, and C. J. Chang-Hasnain, “Low birefringence and 2-D optical confinement of Hollow waveguide with distributed Bragg reflector and high index contrast grating,” IEEE Photon. J. 1, 135–143 (2009).
[CrossRef]

Koyama, F.

M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide,” Appl. Phys. Lett. 94, 061112 (2009).
[CrossRef]

M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, and C. J. Chang-Hasnain, “Low birefringence and 2-D optical confinement of Hollow waveguide with distributed Bragg reflector and high index contrast grating,” IEEE Photon. J. 1, 135–143 (2009).
[CrossRef]

M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultrawide birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34, 1252–1254 (2009).
[CrossRef]

Y. Sakurai, A. Matsutani, and F. Koyama, “Tunable stop-band hollow waveguide Bragg reflector with tapered air-core for adaptive dispersion-compensation,” Appl. Phys. Lett. 88, 121103 (2006).
[CrossRef]

Y. Sakurai, Y. Yokota, A. Matsutani, and F. Koyama, “Tunable hollow waveguide Bragg grating with low-temperature dependence,” Appl. Phys. Lett. 86, 071111 (2005).
[CrossRef]

Y. Sakurai and F. Koyama, “Tunable hollow waveguide distributed Bragg reflectors with variable air core,” Opt. Express 12, 2851–2856 (2004).
[CrossRef]

M. Ishikawa, T. Miura, A. Matsutani, and F. Koyama, “Design and fabrication of grating demultiplexer using hollow optical waveguide,” Jpn. J. Appl. Phys. 43, L5761–L5763 (2004).
[CrossRef]

T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
[CrossRef]

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[CrossRef]

H. Yamakawa and F. Koyama, “Hybrid-integrated tunable hollow waveguide DBR laser,” European Conference on Optical Communications (ECOC 2006) (IEEE, 2006), paper We3.P.54.

H. Yamakawa and F. Koyama, “Athermal GaInAsP/InP semiconductor laser using hollow waveguide distributed Bragg reflector,” 12th Microoptics Conference (MOC2007), Seoul, Korea, 11–14 September (2006), paper A-2.

Kumar, M.

M. Kumar, “Polarization insensitive hollow optical waveguide,” Opt. Commun. 285, 2360–2362 (2012).
[CrossRef]

M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultrawide birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34, 1252–1254 (2009).
[CrossRef]

M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, and C. J. Chang-Hasnain, “Low birefringence and 2-D optical confinement of Hollow waveguide with distributed Bragg reflector and high index contrast grating,” IEEE Photon. J. 1, 135–143 (2009).
[CrossRef]

M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide,” Appl. Phys. Lett. 94, 061112 (2009).
[CrossRef]

Kumar, S.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[CrossRef]

Li, H.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic devices,” Conference on Lasers and Electro Optics (CLEO) (IEEE, 2012), paper CTu21.4.

Li, M.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic devices,” Conference on Lasers and Electro Optics (CLEO) (IEEE, 2012), paper CTu21.4.

Lin, C.

A. Frenkel and C. Lin, “Inline tunable etalon filter for optical channel selection in high density wavelength division multiplexed fibre systems,” Electron. Lett. 24, 159–160 (1988).
[CrossRef]

Matsutani, A.

Y. Sakurai, A. Matsutani, and F. Koyama, “Tunable stop-band hollow waveguide Bragg reflector with tapered air-core for adaptive dispersion-compensation,” Appl. Phys. Lett. 88, 121103 (2006).
[CrossRef]

Y. Sakurai, Y. Yokota, A. Matsutani, and F. Koyama, “Tunable hollow waveguide Bragg grating with low-temperature dependence,” Appl. Phys. Lett. 86, 071111 (2005).
[CrossRef]

M. Ishikawa, T. Miura, A. Matsutani, and F. Koyama, “Design and fabrication of grating demultiplexer using hollow optical waveguide,” Jpn. J. Appl. Phys. 43, L5761–L5763 (2004).
[CrossRef]

T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
[CrossRef]

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[CrossRef]

Mescia, L.

Miura, T.

M. Ishikawa, T. Miura, A. Matsutani, and F. Koyama, “Design and fabrication of grating demultiplexer using hollow optical waveguide,” Jpn. J. Appl. Phys. 43, L5761–L5763 (2004).
[CrossRef]

T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
[CrossRef]

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[CrossRef]

Palmisano, T.

Pesala, B.

Prudenzano, F.

Qin, Q.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[CrossRef]

Reno, J. L.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[CrossRef]

Righini, G. C.

Sakaguchi, T.

M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultrawide birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34, 1252–1254 (2009).
[CrossRef]

M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide,” Appl. Phys. Lett. 94, 061112 (2009).
[CrossRef]

M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, and C. J. Chang-Hasnain, “Low birefringence and 2-D optical confinement of Hollow waveguide with distributed Bragg reflector and high index contrast grating,” IEEE Photon. J. 1, 135–143 (2009).
[CrossRef]

Sakurai, Y.

Y. Sakurai, A. Matsutani, and F. Koyama, “Tunable stop-band hollow waveguide Bragg reflector with tapered air-core for adaptive dispersion-compensation,” Appl. Phys. Lett. 88, 121103 (2006).
[CrossRef]

Y. Sakurai, Y. Yokota, A. Matsutani, and F. Koyama, “Tunable hollow waveguide Bragg grating with low-temperature dependence,” Appl. Phys. Lett. 86, 071111 (2005).
[CrossRef]

Y. Sakurai and F. Koyama, “Tunable hollow waveguide distributed Bragg reflectors with variable air core,” Opt. Express 12, 2851–2856 (2004).
[CrossRef]

Schanen, C.

M.-C. Amann, S. Illek, C. Schanen, and W. Thulke, “Tunable twin-guide laser: a novel laser diode with improved tuning performance,”Appl. Phys. Lett. 54, 2532–2534 (1989).
[CrossRef]

Sedgwick, F. G.

Suematsu, Y.

Y. Tohmori, Y. Suematsu, Y. Tushima, and S. Arai, “Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in distributed Bragg reflector,” Electron. Lett. 19, 656–657 (1983).
[CrossRef]

Surico, M.

Thulke, W.

M.-C. Amann, S. Illek, C. Schanen, and W. Thulke, “Tunable twin-guide laser: a novel laser diode with improved tuning performance,”Appl. Phys. Lett. 54, 2532–2534 (1989).
[CrossRef]

Tohmori, Y.

Y. Tohmori, Y. Suematsu, Y. Tushima, and S. Arai, “Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in distributed Bragg reflector,” Electron. Lett. 19, 656–657 (1983).
[CrossRef]

Tushima, Y.

Y. Tohmori, Y. Suematsu, Y. Tushima, and S. Arai, “Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in distributed Bragg reflector,” Electron. Lett. 19, 656–657 (1983).
[CrossRef]

Williams, B. S.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[CrossRef]

Yamakawa, H.

H. Yamakawa and F. Koyama, “Hybrid-integrated tunable hollow waveguide DBR laser,” European Conference on Optical Communications (ECOC 2006) (IEEE, 2006), paper We3.P.54.

H. Yamakawa and F. Koyama, “Athermal GaInAsP/InP semiconductor laser using hollow waveguide distributed Bragg reflector,” 12th Microoptics Conference (MOC2007), Seoul, Korea, 11–14 September (2006), paper A-2.

Yokota, Y.

Y. Sakurai, Y. Yokota, A. Matsutani, and F. Koyama, “Tunable hollow waveguide Bragg grating with low-temperature dependence,” Appl. Phys. Lett. 86, 071111 (2005).
[CrossRef]

Zhou, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. Sakurai, A. Matsutani, and F. Koyama, “Tunable stop-band hollow waveguide Bragg reflector with tapered air-core for adaptive dispersion-compensation,” Appl. Phys. Lett. 88, 121103 (2006).
[CrossRef]

Y. Sakurai, Y. Yokota, A. Matsutani, and F. Koyama, “Tunable hollow waveguide Bragg grating with low-temperature dependence,” Appl. Phys. Lett. 86, 071111 (2005).
[CrossRef]

M.-C. Amann, S. Illek, C. Schanen, and W. Thulke, “Tunable twin-guide laser: a novel laser diode with improved tuning performance,”Appl. Phys. Lett. 54, 2532–2534 (1989).
[CrossRef]

M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide,” Appl. Phys. Lett. 94, 061112 (2009).
[CrossRef]

Electron. Lett. (2)

A. Frenkel and C. Lin, “Inline tunable etalon filter for optical channel selection in high density wavelength division multiplexed fibre systems,” Electron. Lett. 24, 159–160 (1988).
[CrossRef]

Y. Tohmori, Y. Suematsu, Y. Tushima, and S. Arai, “Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in distributed Bragg reflector,” Electron. Lett. 19, 656–657 (1983).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 988–999 (2000).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000).
[CrossRef]

IEEE Photon. J. (1)

M. Kumar, C. Chase, V. Karagodsky, T. Sakaguchi, F. Koyama, and C. J. Chang-Hasnain, “Low birefringence and 2-D optical confinement of Hollow waveguide with distributed Bragg reflector and high index contrast grating,” IEEE Photon. J. 1, 135–143 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Miura, F. Koyama, and A. Matsutani, “Novel phase-tunable three-dimensional hollow waveguides with variable air core,” IEEE Photon. Technol. Lett. 15, 1240–1242 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (2)

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[CrossRef]

M. Ishikawa, T. Miura, A. Matsutani, and F. Koyama, “Design and fabrication of grating demultiplexer using hollow optical waveguide,” Jpn. J. Appl. Phys. 43, L5761–L5763 (2004).
[CrossRef]

Nat. Photonics (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[CrossRef]

Opt. Commun. (1)

M. Kumar, “Polarization insensitive hollow optical waveguide,” Opt. Commun. 285, 2360–2362 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (4)

H. Yamakawa and F. Koyama, “Hybrid-integrated tunable hollow waveguide DBR laser,” European Conference on Optical Communications (ECOC 2006) (IEEE, 2006), paper We3.P.54.

H. Yamakawa and F. Koyama, “Athermal GaInAsP/InP semiconductor laser using hollow waveguide distributed Bragg reflector,” 12th Microoptics Conference (MOC2007), Seoul, Korea, 11–14 September (2006), paper A-2.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic devices,” Conference on Lasers and Electro Optics (CLEO) (IEEE, 2012), paper CTu21.4.

http://www.telecomsmarketresearch.com/research/TMAAARXT-New-Markets-for-Telecom-and-Datacom-Lasers-2009-to-2013.shtml .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Not to scale) Schematic of the proposed in-plane mirror. Bragg-grating parameters—thickness, pitch, and length are 500 nm, 860 nm, and 1 mm, respectively. Si-air HCG parameters—grating pitch Λ, and the duty cycle are 1.2 and 0.41 μm, respectively.

Fig. 2.
Fig. 2.

Reflection spectra of the in-plane mirror for DBR–DBR (square dots), HCG–DBR with t=0.4μm (dashes) and for HCG–DBR with t=0.35μm (solid line) HWG at an air-core thickness D=4μm.

Fig. 3.
Fig. 3.

Tuning in Bragg wavelengths of the in-plane mirror for TE and TM modes at t=0.35μm with a variation in air-core thickness D from 5 to 2 μm.

Fig. 4.
Fig. 4.

Polarization dependent reflectivity versus air-core thickness for HCG–DBR and DBR–DBR HWG based in-plane mirrors, at t=0.35μm with a variation in air-core thickness D from 5 to 2 μm.

Metrics