Abstract

In traditional cases, the basic principle of carpet cloak is that a two-dimensional bump above ground plane is compressed into a one-dimensional line which is close to the ground plane. As a result, the bump can be hidden. In this paper, different from the traditional carpet cloak, we propose a shifting media to achieve the carpet cloak. By covering with the shifting media, an object floating on a ground plane can be directly shifted beneath the ground plane (rather than compressing it into a line), resulting in a floating carpet cloak. Antiobject independent illusion optics, i.e., turning an object into another one without any antiobjects, can be realized based on this kind of shifting media. As an application of the shifting media, a restoring device, by which the broken objects (such as antiques) can be perfectly restored, is also investigated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [CrossRef]
  3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
    [CrossRef]
  4. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
    [CrossRef]
  5. H. Y. Chen, C. T. Chan, and P. Shen, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
    [CrossRef]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef]
  7. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
    [CrossRef]
  8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [CrossRef]
  9. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
    [CrossRef]
  10. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground plane cloak made of matematerials,” Nat. Commun. 1, 21–26 (2010).
    [CrossRef]
  11. X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176–181 (2011).
    [CrossRef]
  12. B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
    [CrossRef]
  13. F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78–82 (2011).
    [CrossRef]
  14. D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
    [CrossRef]
  15. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct. Fundam. Applic. 6, 87–95 (2008).
    [CrossRef]
  16. W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D 41, 085504 (2008).
    [CrossRef]
  17. C. Li, K. Yao, and F. Li, “Two-dimensional electromagnetic cloaks with non-conformal inner and outer boundaries,” Opt. Express 16, 19366–19374 (2008).
    [CrossRef]
  18. B. Ivsic, Z. Sipus, and S. Hrabar, “Analysis of uniaxial multilayer cylinders used for invisible cloak realization,” IEEE Trans. Antennas Propag. 57, 1521–1527 (2009).
    [CrossRef]
  19. T. Han, C. W. Oiu, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
    [CrossRef]
  20. T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008).
    [CrossRef]
  21. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
    [CrossRef]
  22. J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
    [CrossRef]
  23. H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “A simple route to a tunable electromagnetic gateway,” New. J. Phys. 10, 083012 (2009).
    [CrossRef]
  24. K. Wu and G. P. Wang, “General insight into the complementary media-based camouflage devices from Fourier optics,” Opt. Lett. 35, 2242–2244 (2010).
    [CrossRef]
  25. J. S. Mei, Q. Wu, and K. Zhang, “Multifunction complementary cloak with homogeneous anisotropic material parameters,” J. Opt. Soc. Am. B. 29, 2067–2073 (2012).
    [CrossRef]
  26. Y. D. Xu, S. W. Du, L. Gao, and H. Y. Chen, “Overlapped illusion optics: a perfect lens brings a brighter feature,” New. J. Phys. 13, 023010 (2011).
    [CrossRef]
  27. Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
    [CrossRef]
  28. J. J Zhang, Y. Luo, and N. A. Mortensen, “Hiding levitating objects above a ground plane,” Appl. Phys. Lett. 97, 133501 (2010).
    [CrossRef]
  29. W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96, 121910 (2010).
    [CrossRef]
  30. W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E. 83, 026601 (2011).
    [CrossRef]
  31. W. X. Jiang and T. J. Cui, “Moving targets virtually via composite optical transformation,” Opt. Express 18, 5161–5167 (2010).
    [CrossRef]

2012 (2)

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

J. S. Mei, Q. Wu, and K. Zhang, “Multifunction complementary cloak with homogeneous anisotropic material parameters,” J. Opt. Soc. Am. B. 29, 2067–2073 (2012).
[CrossRef]

2011 (5)

Y. D. Xu, S. W. Du, L. Gao, and H. Y. Chen, “Overlapped illusion optics: a perfect lens brings a brighter feature,” New. J. Phys. 13, 023010 (2011).
[CrossRef]

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E. 83, 026601 (2011).
[CrossRef]

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176–181 (2011).
[CrossRef]

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78–82 (2011).
[CrossRef]

2010 (7)

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground plane cloak made of matematerials,” Nat. Commun. 1, 21–26 (2010).
[CrossRef]

T. Han, C. W. Oiu, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
[CrossRef]

H. Y. Chen, C. T. Chan, and P. Shen, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

J. J Zhang, Y. Luo, and N. A. Mortensen, “Hiding levitating objects above a ground plane,” Appl. Phys. Lett. 97, 133501 (2010).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96, 121910 (2010).
[CrossRef]

W. X. Jiang and T. J. Cui, “Moving targets virtually via composite optical transformation,” Opt. Express 18, 5161–5167 (2010).
[CrossRef]

K. Wu and G. P. Wang, “General insight into the complementary media-based camouflage devices from Fourier optics,” Opt. Lett. 35, 2242–2244 (2010).
[CrossRef]

2009 (8)

J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
[CrossRef]

Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “A simple route to a tunable electromagnetic gateway,” New. J. Phys. 10, 083012 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef]

B. Ivsic, Z. Sipus, and S. Hrabar, “Analysis of uniaxial multilayer cylinders used for invisible cloak realization,” IEEE Trans. Antennas Propag. 57, 1521–1527 (2009).
[CrossRef]

2008 (5)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct. Fundam. Applic. 6, 87–95 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D 41, 085504 (2008).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef]

T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008).
[CrossRef]

C. Li, K. Yao, and F. Li, “Two-dimensional electromagnetic cloaks with non-conformal inner and outer boundaries,” Opt. Express 16, 19366–19374 (2008).
[CrossRef]

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Bao, Y.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78–82 (2011).
[CrossRef]

Barbastathis, G.

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Cao, W.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78–82 (2011).
[CrossRef]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Chan, C. T.

H. Y. Chen, C. T. Chan, and P. Shen, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “A simple route to a tunable electromagnetic gateway,” New. J. Phys. 10, 083012 (2009).
[CrossRef]

Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef]

J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
[CrossRef]

Chen, H. Y.

Y. D. Xu, S. W. Du, L. Gao, and H. Y. Chen, “Overlapped illusion optics: a perfect lens brings a brighter feature,” New. J. Phys. 13, 023010 (2011).
[CrossRef]

H. Y. Chen, C. T. Chan, and P. Shen, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “A simple route to a tunable electromagnetic gateway,” New. J. Phys. 10, 083012 (2009).
[CrossRef]

Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
[CrossRef]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef]

T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008).
[CrossRef]

Chen, X. Z.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176–181 (2011).
[CrossRef]

Cheng, Q.

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96, 121910 (2010).
[CrossRef]

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D 41, 085504 (2008).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D 41, 085504 (2008).
[CrossRef]

Cui, T. J.

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E. 83, 026601 (2011).
[CrossRef]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground plane cloak made of matematerials,” Nat. Commun. 1, 21–26 (2010).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96, 121910 (2010).
[CrossRef]

W. X. Jiang and T. J. Cui, “Moving targets virtually via composite optical transformation,” Opt. Express 18, 5161–5167 (2010).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D 41, 085504 (2008).
[CrossRef]

Cummer, S. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct. Fundam. Applic. 6, 87–95 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Du, S. W.

Y. D. Xu, S. W. Du, L. Gao, and H. Y. Chen, “Overlapped illusion optics: a perfect lens brings a brighter feature,” New. J. Phys. 13, 023010 (2011).
[CrossRef]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Gao, L.

Y. D. Xu, S. W. Du, L. Gao, and H. Y. Chen, “Overlapped illusion optics: a perfect lens brings a brighter feature,” New. J. Phys. 13, 023010 (2011).
[CrossRef]

Gu, J.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78–82 (2011).
[CrossRef]

Han, D.

Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Han, J.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

Han, T.

T. Han, C. W. Oiu, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
[CrossRef]

Hrabar, S.

B. Ivsic, Z. Sipus, and S. Hrabar, “Analysis of uniaxial multilayer cylinders used for invisible cloak realization,” IEEE Trans. Antennas Propag. 57, 1521–1527 (2009).
[CrossRef]

Ivsic, B.

B. Ivsic, Z. Sipus, and S. Hrabar, “Analysis of uniaxial multilayer cylinders used for invisible cloak realization,” IEEE Trans. Antennas Propag. 57, 1521–1527 (2009).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

Jiang, K.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176–181 (2011).
[CrossRef]

Jiang, W. X.

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E. 83, 026601 (2011).
[CrossRef]

W. X. Jiang and T. J. Cui, “Moving targets virtually via composite optical transformation,” Opt. Express 18, 5161–5167 (2010).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96, 121910 (2010).
[CrossRef]

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D 41, 085504 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Lai, Y.

Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

Li, C.

Li, F.

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef]

Liang, D.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

Lin, X. Q.

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D 41, 085504 (2008).
[CrossRef]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

Liu, X. G.

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

Luo, X.

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “A simple route to a tunable electromagnetic gateway,” New. J. Phys. 10, 083012 (2009).
[CrossRef]

T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008).
[CrossRef]

Luo, Y.

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176–181 (2011).
[CrossRef]

J. J Zhang, Y. Luo, and N. A. Mortensen, “Hiding levitating objects above a ground plane,” Appl. Phys. Lett. 97, 133501 (2010).
[CrossRef]

Ma, H.

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “A simple route to a tunable electromagnetic gateway,” New. J. Phys. 10, 083012 (2009).
[CrossRef]

T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008).
[CrossRef]

Ma, H. F.

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96, 121910 (2010).
[CrossRef]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground plane cloak made of matematerials,” Nat. Commun. 1, 21–26 (2010).
[CrossRef]

Mei, J. S.

J. S. Mei, Q. Wu, and K. Zhang, “Multifunction complementary cloak with homogeneous anisotropic material parameters,” J. Opt. Soc. Am. B. 29, 2067–2073 (2012).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Mortensen, N. A.

J. J Zhang, Y. Luo, and N. A. Mortensen, “Hiding levitating objects above a ground plane,” Appl. Phys. Lett. 97, 133501 (2010).
[CrossRef]

Ng, J.

J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
[CrossRef]

Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Oiu, C. W.

T. Han, C. W. Oiu, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
[CrossRef]

Pendry, J. B.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176–181 (2011).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct. Fundam. Applic. 6, 87–95 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct. Fundam. Applic. 6, 87–95 (2008).
[CrossRef]

Roberts, D. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct. Fundam. Applic. 6, 87–95 (2008).
[CrossRef]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct. Fundam. Applic. 6, 87–95 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Shen, P.

H. Y. Chen, C. T. Chan, and P. Shen, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

Sipus, Z.

B. Ivsic, Z. Sipus, and S. Hrabar, “Analysis of uniaxial multilayer cylinders used for invisible cloak realization,” IEEE Trans. Antennas Propag. 57, 1521–1527 (2009).
[CrossRef]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct. Fundam. Applic. 6, 87–95 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Stuart, C. T.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78–82 (2011).
[CrossRef]

Sun, C.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78–82 (2011).
[CrossRef]

Tang, X. H.

T. Han, C. W. Oiu, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Wang, G. P.

Wu, K.

Wu, Q.

J. S. Mei, Q. Wu, and K. Zhang, “Multifunction complementary cloak with homogeneous anisotropic material parameters,” J. Opt. Soc. Am. B. 29, 2067–2073 (2012).
[CrossRef]

Xiao, J.

Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Xu, Y. D.

Y. D. Xu, S. W. Du, L. Gao, and H. Y. Chen, “Overlapped illusion optics: a perfect lens brings a brighter feature,” New. J. Phys. 13, 023010 (2011).
[CrossRef]

Yang, T.

Yang, Y.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

Yao, K.

Yu, G. X.

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D 41, 085504 (2008).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Zhang, B. L.

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

Zhang, J. J

J. J Zhang, Y. Luo, and N. A. Mortensen, “Hiding levitating objects above a ground plane,” Appl. Phys. Lett. 97, 133501 (2010).
[CrossRef]

Zhang, J. J.

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176–181 (2011).
[CrossRef]

Zhang, K.

J. S. Mei, Q. Wu, and K. Zhang, “Multifunction complementary cloak with homogeneous anisotropic material parameters,” J. Opt. Soc. Am. B. 29, 2067–2073 (2012).
[CrossRef]

Zhang, S.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176–181 (2011).
[CrossRef]

Zhang, W. L.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78–82 (2011).
[CrossRef]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “A simple route to a tunable electromagnetic gateway,” New. J. Phys. 10, 083012 (2009).
[CrossRef]

Zhang, Z.

Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Zhang, Z. Q.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef]

Zhou, F.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78–82 (2011).
[CrossRef]

Adv. Mater. (1)

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24, 916–921 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

T. Han, C. W. Oiu, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
[CrossRef]

J. J Zhang, Y. Luo, and N. A. Mortensen, “Hiding levitating objects above a ground plane,” Appl. Phys. Lett. 97, 133501 (2010).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96, 121910 (2010).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

B. Ivsic, Z. Sipus, and S. Hrabar, “Analysis of uniaxial multilayer cylinders used for invisible cloak realization,” IEEE Trans. Antennas Propag. 57, 1521–1527 (2009).
[CrossRef]

J. Opt. Soc. Am. B. (1)

J. S. Mei, Q. Wu, and K. Zhang, “Multifunction complementary cloak with homogeneous anisotropic material parameters,” J. Opt. Soc. Am. B. 29, 2067–2073 (2012).
[CrossRef]

J. Phys. D (1)

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D 41, 085504 (2008).
[CrossRef]

Nat. Commun. (2)

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground plane cloak made of matematerials,” Nat. Commun. 1, 21–26 (2010).
[CrossRef]

X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176–181 (2011).
[CrossRef]

Nat. Mater. (2)

H. Y. Chen, C. T. Chan, and P. Shen, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Nat. Photonics (2)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

New. J. Phys. (2)

Y. D. Xu, S. W. Du, L. Gao, and H. Y. Chen, “Overlapped illusion optics: a perfect lens brings a brighter feature,” New. J. Phys. 13, 023010 (2011).
[CrossRef]

H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “A simple route to a tunable electromagnetic gateway,” New. J. Phys. 10, 083012 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Photon. Nanostruct. Fundam. Applic. (1)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct. Fundam. Applic. 6, 87–95 (2008).
[CrossRef]

Phys. Rev. E. (1)

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E. 83, 026601 (2011).
[CrossRef]

Phys. Rev. Lett. (4)

Y. Lai, J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef]

B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef]

Sci. Rep. (1)

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. L. Zhang, and C. Sun, “Hiding a realistic object using a broadband terahertz invisibility cloak,” Sci. Rep. 1, 78–82 (2011).
[CrossRef]

Science (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the shifting media in two-dimensional view. The inner (core) blue region is an object while the gray region is the shifting media. The blue core region A1B1C1D1 can be moved to region A1B1C1D1. Both of these two regions are separated with a distance d.

Fig. 2.
Fig. 2.

Electric field distribution of the shifting media (d=1m), when the center region (region V) is embedded with (a) free space or (c) PEC, and the incident plane wave moves from left to right with tilt angle of 45°. (b) Electric field distribution of the PEC without the shifting media shell. (d) The corresponding scattered patterns of (a)–(c).

Fig. 3.
Fig. 3.

(a) Electric field distribution when a Gaussian beam is launched at 45° toward the ground in the case of d=1m. (b) Electric field distribution when a bare trapezoidal-shaped PEC is present above the ground plane. (c) The same as (b) but the PEC is covered with a shifting media shell. (d) and (e) The same as (c) but with triangular-shaped and arbitrary-shaped PEC, respectively. (f) The corresponding far-field scattered patterns of (a)–(e).

Fig. 4.
Fig. 4.

(a) Electric field distribution when a Gaussian beam is launched from the left side with just a bare dielectric spoon in free space for d=2.25m. (b) The same as (a) but the spoon is covered with a shifting media shell and an arrow-shaped object is embedded in the compression region. (c) Electric field distribution when a Gaussian beam is launched from the left side with just a bare arrow-shaped object (PEC) in free space. (d) The same as (b) but without the arrow-shaped object. (e) The corresponding far-field scattered patterns of (a)–(c).

Fig. 5.
Fig. 5.

(a) Electric field distribution when a plane wave is launched toward a porcelain bottle from the left for d=1.5m. (b) Electric field distribution when the porcelain bottle is divided into two parts. (c) The same as (b), but one part of the broken porcelain bottle is covered with shifting media. (d) The corresponding far-field scattered patterns of (a)–(c).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x=xy=(h21h11)y+d*h21h21h11d,z=z,
x=xy=(h21h11)y+d*h21h21h11+d,z=z,
x=xy=y+d*[c21+(c22c21)(y+h21)/2h21x]c21c11+(c22c21)(h21h11)/2h21,z=z,
x=xy=y+d*[c21+(c22c21)(y+h21)/2h21+x]c21c11+(c22c21)(h21h11)/2h21,z=z.
ε¯¯ε=μ¯¯μ=[1/m1000m10001/m1],
ε¯¯ε=μ¯¯μ=[1/m2000m20001/m2],
ε¯¯ε=μ¯¯μ=[1m3m40m4(1+m42)/(1m3)0001m3],
ε¯¯ε=μ¯¯μ=[1m3m40m4(1+m42)/(1m3)0001m3],
εx=εxx+εyy(εxxεyy)2+4εxy22εy=εxx+εyy+(εxxεyy)2+4εxy22εz=εzz,

Metrics