Abstract

We investigate the slow light engineering in periodic-stub-assisted plasmonic waveguide based on transmission line theory. It is found that the dispersion relationship of the proposed waveguide can be easily modified by tuning the stub depth and the period. The theoretical results show that a large normalized delay bandwidth product of 0.65 can be achieved at 1550 nm, meanwhile maintaining the group index of 35. In addition, the proposed waveguide shows “S-shaped” dispersion curve, which implies that the group velocity dispersion parameter at the inflection point equals zero and a dispersion-free slow light waveguide can be realized. Due to the excellent buffering capacity, the proposed compact configuration can find important applications on optical buffers in highly integrated optical circuits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92083901 (2004).
    [CrossRef]
  2. M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
    [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
    [CrossRef]
  4. G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
    [CrossRef]
  5. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [CrossRef]
  6. J. Liang, L. Ren, M. Yun, X. Han, and X. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
    [CrossRef]
  7. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef]
  8. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
    [CrossRef]
  9. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99, 143117 (2011).
    [CrossRef]
  10. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
    [CrossRef]
  11. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
    [CrossRef]
  12. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
    [CrossRef]
  13. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
    [CrossRef]
  14. G. Wang, H. Lu, and X. Liu, “Gain-assisted trapping of light in tapered plasmonic waveguide,” Opt. Lett. 38, 558–560 (2013).
    [CrossRef]
  15. L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80, 161106 (2009).
    [CrossRef]
  16. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
    [CrossRef]
  17. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
    [CrossRef]
  18. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  19. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polaritons reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
    [CrossRef]
  20. J. Zhang, L. Cai, W. Bai, and G. Song, “Flat surface plasmon polaritons bands in Bragg grating waveguide for slow light,” J. Lightwave Technol. 28, 2030–2036 (2010).
    [CrossRef]
  21. G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
    [CrossRef]
  22. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
    [CrossRef]
  23. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
    [CrossRef]
  24. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  25. Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal–insulator–metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010).
    [CrossRef]
  26. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
    [CrossRef]
  27. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in MIM plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
    [CrossRef]
  28. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
    [CrossRef]
  29. H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
    [CrossRef]
  30. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal–dielectric–metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
    [CrossRef]
  31. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009).
    [CrossRef]
  32. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
    [CrossRef]
  33. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950(2010).
    [CrossRef]
  34. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef]

2013 (1)

2012 (4)

G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
[CrossRef]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
[CrossRef]

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[CrossRef]

2011 (7)

2010 (8)

Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal–insulator–metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010).
[CrossRef]

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950(2010).
[CrossRef]

A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal–dielectric–metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
[CrossRef]

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[CrossRef]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef]

J. Zhang, L. Cai, W. Bai, and G. Song, “Flat surface plasmon polaritons bands in Bragg grating waveguide for slow light,” J. Lightwave Technol. 28, 2030–2036 (2010).
[CrossRef]

L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

2009 (4)

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80, 161106 (2009).
[CrossRef]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polaritons reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[CrossRef]

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009).
[CrossRef]

2008 (3)

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

2007 (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

2006 (1)

2005 (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

2004 (1)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92083901 (2004).
[CrossRef]

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

2001 (1)

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
[CrossRef]

Agrawal, G. P.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

Bai, W.

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef]

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80, 161106 (2009).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Borel, P. I.

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Cai, L.

Cassan, E.

Chen, L.

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80, 161106 (2009).
[CrossRef]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

Do Khanh, V.

Duan, L.

Fage-Pedersen, J.

Fan, S.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92083901 (2004).
[CrossRef]

Fang, G.

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Frandsen, L. H.

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef]

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80, 161106 (2009).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

Gao, D.

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Gong, Y.

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[CrossRef]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in MIM plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef]

Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal–insulator–metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polaritons reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Han, X.

J. Liang, L. Ren, M. Yun, X. Han, and X. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Hao, R.

Hattori, H. T.

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Hu, X.

Huang, Y.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99, 143117 (2011).
[CrossRef]

Imamoglu, A.

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
[CrossRef]

Kim, H.

Kurt, H.

Lavrinenko, A. V.

Le Roux, X.

Lee, B.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Li, X.

Liang, J.

J. Liang, L. Ren, M. Yun, X. Han, and X. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Liu, J.

Liu, S.

Liu, X.

G. Wang, H. Lu, and X. Liu, “Gain-assisted trapping of light in tapered plasmonic waveguide,” Opt. Lett. 38, 558–560 (2013).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
[CrossRef]

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
[CrossRef]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
[CrossRef]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in MIM plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal–insulator–metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010).
[CrossRef]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polaritons reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[CrossRef]

Lu, H.

G. Wang, H. Lu, and X. Liu, “Gain-assisted trapping of light in tapered plasmonic waveguide,” Opt. Lett. 38, 558–560 (2013).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
[CrossRef]

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[CrossRef]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
[CrossRef]

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in MIM plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef]

Lukin, M. D.

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
[CrossRef]

Mao, D.

Marris-Morini, D.

Min, C.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99, 143117 (2011).
[CrossRef]

L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
[CrossRef]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Pannipitiya, A.

Park, J.

Premaratne, M.

Ren, L.

J. Liang, L. Ren, M. Yun, X. Han, and X. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Rukhlenko, I. D.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Song, G.

Veronis, G.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99, 143117 (2011).
[CrossRef]

L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
[CrossRef]

Vivien, L.

Wang, G.

G. Wang, H. Lu, and X. Liu, “Gain-assisted trapping of light in tapered plasmonic waveguide,” Opt. Lett. 38, 558–560 (2013).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
[CrossRef]

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80, 161106 (2009).
[CrossRef]

Wang, L.

Wang, X.

J. Liang, L. Ren, M. Yun, X. Han, and X. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Wu, H.

Yang, L.

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92083901 (2004).
[CrossRef]

Yun, M.

J. Liang, L. Ren, M. Yun, X. Han, and X. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

Zhang, J.

Zhang, X.

Zhang, Y.

Zhao, H.

Zhou, Z.

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012).
[CrossRef]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99, 143117 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

J. Appl. Phys. (1)

J. Liang, L. Ren, M. Yun, X. Han, and X. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Nanotechnology (1)

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012).
[CrossRef]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

Nature (1)

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
[CrossRef]

Opt. Commun. (1)

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

Opt. Express (12)

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polaritons reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009).
[CrossRef]

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009).
[CrossRef]

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950(2010).
[CrossRef]

A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal–dielectric–metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010).
[CrossRef]

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[CrossRef]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011).
[CrossRef]

G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012).
[CrossRef]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012).
[CrossRef]

Phys. Rev. B (1)

L. Chen, G. Wang, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80, 161106 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92083901 (2004).
[CrossRef]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Other (1)

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the MIM plasmonic waveguide: w, the width of the waveguide and stubs; p, the period of the grating; h1(h2) the depth of the upper (lower) stubs. (b) Equivalent circuit of the proposed MIM waveguide system.

Fig. 2.
Fig. 2.

(a) Evolution of transmission spectrum with the distance between the two stubs in one unit of the grating. The width of the waveguide and the stub is w=50nm and the depths of the two stubs are h1=220nm and h2=320nm, respectively. (b) Evolution of transmission spectrum with h2. In the calculations, w=50nm and h1=220nm. (c) Evolution of propagation constant β at different frequencies with the stub depth h2. The region between the two white dashed lines corresponds to the pass band of the transparency window. (d) Group indices of SPP wave as a function of frequency for different stub depths h2.

Fig. 3.
Fig. 3.

(a) Evolution of propagation constant β at different frequencies with the period p. The region between the two white dashed lines corresponds to the pass band of the transparency window. (b) The bandwidth of the pass band and the frequency at the transparency peak for different periods. The stub depths are h1=220nm and h2=320nm, respectively. The width of the stubs and the waveguide is w=50nm.

Fig. 4.
Fig. 4.

(a) Evolution of transmission spectrum with different stub depths h1 and h2 for six units of the grating that coupled to the waveguide. The white circle corresponds to the smallest difference between the two stub depths. The width of the stubs and the waveguide is w=50nm and the period is p=295nm. The frequency of the incident light is 193.5 THz. (b) Evolution of transmission spectrum with different p for six units of the grating that coupled to the waveguide. The stub depths are h1=230nm and h2=300nm, respectively. The white line corresponds to the period where the pass band is narrowest. (c) Dispersion relationship and the group index of SPP wave as a function of the frequency. (d) Second- and third-order dispersion parameters of the structure. In calculations of (c)–(d), the parameters are the same as that in (b), except p=300nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

εm(ω)=εωp2ω(ω+iγ),
TMIM=(exp(iβ0p)00exp(iβ0p)),Tstub=(1+ZMIM2ZstubZMIM2ZstubZMIM2Zstub1ZMIM2Zstub),
cosh(Kp)=12(T11+T22),
ng=c/vg=cdβ/dω.
n˜g=ω0ω0+Δωng(ω)×dω/Δω.

Metrics