Abstract

In this work we present a method that enables simultaneous measurement of shape and wall parameters of glass containers. The system is based on the optical coherence tomography technique, employing the spectral domain configuration. The data were obtained by measuring the spatial coordinates of a sequence of points in a predefined region of a sample that includes points on the surface and in the interior of the material. Dimensional parameters, thickness mapping, and tomography studies of the interior of the sample walls can be obtained from these measurements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Canivet, R. D. Zhang, and M. Jourlin, “Finish inspection by vision for glass production,” Proc. SPIE 2183, 164–169 (1994).
    [CrossRef]
  2. H. Liu and Y. Wang, “Development of glass bottle inspector based on machine vision,” presented at the 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December2008.
  3. M. Carrasco, L. Pizarro, and D. Mery, “Image acquisition and automated inspection of wine bottlenecks by tracking in multiple views,” in Proceedings of the 8th International Conference on Signal Processing, Computational Geometry and Artificial Vision (ISCGAV) 2008(World Scientific, 2008), pp. 82–89.
  4. Z. Wen, J. Ge, L. Xia, Y. Luo, and Z. Chen, “Fast online detection of body defect of glass containers,” Proc. SPIE 8201, 82011 (2011).
    [CrossRef]
  5. http://www.krones.com/en/index.html ; http://www.emhartglass.com/cold-end .
  6. J. Laurent and L. Francis, “Method for measuring three-dimensional objects by single-view optical shadowgraphy, using the optical laws of light propagation,” U.S. patent 7,880,898 (1February2011).
  7. V. N. Kumar and D. N. Rao, “Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials,” J. Opt. Soc. Am. B 12, 1559–1563 (1995).
    [CrossRef]
  8. R. Nitsche and T. Fritz, “Correct interpretation of spectral interference measurements of weakly absorbing films of micrometer thickness,” Opt. Lett. 29, 938–940(2004).
    [CrossRef]
  9. P. Hlubina, D. Ciprian, J. Lunácek, and M. Lesnák, “Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film,” Opt. Express 14, 7678–7685 (2006).
    [CrossRef]
  10. http://www.octnews.org/category/14/non-medical/ .
  11. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
    [CrossRef]
  12. D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Advanced optical coherence tomography techniques: novel and fast imaging tools for non-destructive testing,” presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28October2008. http://www.ndt.net/article/wcndt2008/papers/456.pdf .
  13. V. Srivastava, T. Anna, M. Sudan, and D. Singh Mehta, “Tomographic and volumetric reconstruction of composite materials using full-field swept-source optical coherence tomography,” Meas. Sci. Technol. 23, 055203 (2012).
    [CrossRef]
  14. D. F. Murphy and D. A. Flavin, “Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry,” Appl. Opt. 39, 4607–4615 (2000).
    [CrossRef]
  15. S. H. Kim, S. H. Lee, J. I. Lim, and K. H. Kim, “Absolute refractive index measurement method over a broad wavelength region based on white-light interferometry,” Appl. Opt. 49, 910–914 (2010).
    [CrossRef]
  16. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
    [CrossRef]
  17. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
    [CrossRef]
  18. Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt. 46, 8499–8505 (2007).
    [CrossRef]
  19. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
    [CrossRef]

2012

V. Srivastava, T. Anna, M. Sudan, and D. Singh Mehta, “Tomographic and volumetric reconstruction of composite materials using full-field swept-source optical coherence tomography,” Meas. Sci. Technol. 23, 055203 (2012).
[CrossRef]

2011

Z. Wen, J. Ge, L. Xia, Y. Luo, and Z. Chen, “Fast online detection of body defect of glass containers,” Proc. SPIE 8201, 82011 (2011).
[CrossRef]

2010

2008

2007

Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt. 46, 8499–8505 (2007).
[CrossRef]

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[CrossRef]

2006

2004

2002

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef]

2000

1995

1994

M. Canivet, R. D. Zhang, and M. Jourlin, “Finish inspection by vision for glass production,” Proc. SPIE 2183, 164–169 (1994).
[CrossRef]

Anna, T.

V. Srivastava, T. Anna, M. Sudan, and D. Singh Mehta, “Tomographic and volumetric reconstruction of composite materials using full-field swept-source optical coherence tomography,” Meas. Sci. Technol. 23, 055203 (2012).
[CrossRef]

Bajraszewski, T.

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef]

Baumann, B.

D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Advanced optical coherence tomography techniques: novel and fast imaging tools for non-destructive testing,” presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28October2008. http://www.ndt.net/article/wcndt2008/papers/456.pdf .

Bouma, B.

Canivet, M.

M. Canivet, R. D. Zhang, and M. Jourlin, “Finish inspection by vision for glass production,” Proc. SPIE 2183, 164–169 (1994).
[CrossRef]

Carrasco, M.

M. Carrasco, L. Pizarro, and D. Mery, “Image acquisition and automated inspection of wine bottlenecks by tracking in multiple views,” in Proceedings of the 8th International Conference on Signal Processing, Computational Geometry and Artificial Vision (ISCGAV) 2008(World Scientific, 2008), pp. 82–89.

Cense, B.

Chen, T.

Chen, Z.

Z. Wen, J. Ge, L. Xia, Y. Luo, and Z. Chen, “Fast online detection of body defect of glass containers,” Proc. SPIE 8201, 82011 (2011).
[CrossRef]

Ciprian, D.

de Boer, J.

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef]

Flavin, D. A.

Francis, L.

J. Laurent and L. Francis, “Method for measuring three-dimensional objects by single-view optical shadowgraphy, using the optical laws of light propagation,” U.S. patent 7,880,898 (1February2011).

Fritz, T.

Ge, J.

Z. Wen, J. Ge, L. Xia, Y. Luo, and Z. Chen, “Fast online detection of body defect of glass containers,” Proc. SPIE 8201, 82011 (2011).
[CrossRef]

Götzinger, E.

D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Advanced optical coherence tomography techniques: novel and fast imaging tools for non-destructive testing,” presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28October2008. http://www.ndt.net/article/wcndt2008/papers/456.pdf .

Hitzenberger, C.

D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Advanced optical coherence tomography techniques: novel and fast imaging tools for non-destructive testing,” presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28October2008. http://www.ndt.net/article/wcndt2008/papers/456.pdf .

Hlubina, P.

Hu, Z.

Huber, R.

Jourlin, M.

M. Canivet, R. D. Zhang, and M. Jourlin, “Finish inspection by vision for glass production,” Proc. SPIE 2183, 164–169 (1994).
[CrossRef]

Kim, K. H.

Kim, S. H.

Kowalczyk, A.

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef]

Kumar, V. N.

Laurent, J.

J. Laurent and L. Francis, “Method for measuring three-dimensional objects by single-view optical shadowgraphy, using the optical laws of light propagation,” U.S. patent 7,880,898 (1February2011).

Lee, S. H.

Leiss, E.

D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Advanced optical coherence tomography techniques: novel and fast imaging tools for non-destructive testing,” presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28October2008. http://www.ndt.net/article/wcndt2008/papers/456.pdf .

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef]

Lesnák, M.

Lim, J. I.

Liu, H.

H. Liu and Y. Wang, “Development of glass bottle inspector based on machine vision,” presented at the 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December2008.

Lunácek, J.

Luo, Y.

Z. Wen, J. Ge, L. Xia, Y. Luo, and Z. Chen, “Fast online detection of body defect of glass containers,” Proc. SPIE 8201, 82011 (2011).
[CrossRef]

Mehta, D. Singh

V. Srivastava, T. Anna, M. Sudan, and D. Singh Mehta, “Tomographic and volumetric reconstruction of composite materials using full-field swept-source optical coherence tomography,” Meas. Sci. Technol. 23, 055203 (2012).
[CrossRef]

Mery, D.

M. Carrasco, L. Pizarro, and D. Mery, “Image acquisition and automated inspection of wine bottlenecks by tracking in multiple views,” in Proceedings of the 8th International Conference on Signal Processing, Computational Geometry and Artificial Vision (ISCGAV) 2008(World Scientific, 2008), pp. 82–89.

Murphy, D. F.

Nassif, N.

Nitsche, R.

Pan, Y.

Park, B.

Pierce, M.

Pircher, M.

D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Advanced optical coherence tomography techniques: novel and fast imaging tools for non-destructive testing,” presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28October2008. http://www.ndt.net/article/wcndt2008/papers/456.pdf .

Pizarro, L.

M. Carrasco, L. Pizarro, and D. Mery, “Image acquisition and automated inspection of wine bottlenecks by tracking in multiple views,” in Proceedings of the 8th International Conference on Signal Processing, Computational Geometry and Artificial Vision (ISCGAV) 2008(World Scientific, 2008), pp. 82–89.

Rao, D. N.

Rollins, A. M.

Srivastava, V.

V. Srivastava, T. Anna, M. Sudan, and D. Singh Mehta, “Tomographic and volumetric reconstruction of composite materials using full-field swept-source optical coherence tomography,” Meas. Sci. Technol. 23, 055203 (2012).
[CrossRef]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[CrossRef]

D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Advanced optical coherence tomography techniques: novel and fast imaging tools for non-destructive testing,” presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28October2008. http://www.ndt.net/article/wcndt2008/papers/456.pdf .

Sudan, M.

V. Srivastava, T. Anna, M. Sudan, and D. Singh Mehta, “Tomographic and volumetric reconstruction of composite materials using full-field swept-source optical coherence tomography,” Meas. Sci. Technol. 23, 055203 (2012).
[CrossRef]

Szkulmowska, A.

Szkulmowski, M.

Tearney, G.

Wang, Y.

H. Liu and Y. Wang, “Development of glass bottle inspector based on machine vision,” presented at the 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December2008.

Wen, Z.

Z. Wen, J. Ge, L. Xia, Y. Luo, and Z. Chen, “Fast online detection of body defect of glass containers,” Proc. SPIE 8201, 82011 (2011).
[CrossRef]

Wiesauer, K.

D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Advanced optical coherence tomography techniques: novel and fast imaging tools for non-destructive testing,” presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28October2008. http://www.ndt.net/article/wcndt2008/papers/456.pdf .

Wojtkowski, M.

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16, 4163–4176 (2008).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef]

Wurm, M.

D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Advanced optical coherence tomography techniques: novel and fast imaging tools for non-destructive testing,” presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28October2008. http://www.ndt.net/article/wcndt2008/papers/456.pdf .

Xia, L.

Z. Wen, J. Ge, L. Xia, Y. Luo, and Z. Chen, “Fast online detection of body defect of glass containers,” Proc. SPIE 8201, 82011 (2011).
[CrossRef]

Yun, S.

Zhang, R. D.

M. Canivet, R. D. Zhang, and M. Jourlin, “Finish inspection by vision for glass production,” Proc. SPIE 2183, 164–169 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[CrossRef]

J. Biomed. Opt.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

V. Srivastava, T. Anna, M. Sudan, and D. Singh Mehta, “Tomographic and volumetric reconstruction of composite materials using full-field swept-source optical coherence tomography,” Meas. Sci. Technol. 23, 055203 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

M. Canivet, R. D. Zhang, and M. Jourlin, “Finish inspection by vision for glass production,” Proc. SPIE 2183, 164–169 (1994).
[CrossRef]

Z. Wen, J. Ge, L. Xia, Y. Luo, and Z. Chen, “Fast online detection of body defect of glass containers,” Proc. SPIE 8201, 82011 (2011).
[CrossRef]

Other

http://www.krones.com/en/index.html ; http://www.emhartglass.com/cold-end .

J. Laurent and L. Francis, “Method for measuring three-dimensional objects by single-view optical shadowgraphy, using the optical laws of light propagation,” U.S. patent 7,880,898 (1February2011).

http://www.octnews.org/category/14/non-medical/ .

H. Liu and Y. Wang, “Development of glass bottle inspector based on machine vision,” presented at the 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December2008.

M. Carrasco, L. Pizarro, and D. Mery, “Image acquisition and automated inspection of wine bottlenecks by tracking in multiple views,” in Proceedings of the 8th International Conference on Signal Processing, Computational Geometry and Artificial Vision (ISCGAV) 2008(World Scientific, 2008), pp. 82–89.

D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Götzinger, B. Baumann, and C. Hitzenberger, “Advanced optical coherence tomography techniques: novel and fast imaging tools for non-destructive testing,” presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28October2008. http://www.ndt.net/article/wcndt2008/papers/456.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Scheme showing the coordinates system, the optical head, and the sample holder with the rotation stage.

Fig. 2.
Fig. 2.

General scheme of the optical head: 1, sample; 2, reference arm; 3, sample arm; 4, fiber beam splitter; SLD, superluminiscent diode; DT, spectrometer; RS, Reference arm surface; L, focus lens.

Fig. 3.
Fig. 3.

Sequence of measured points in a complete turn of a cylindrical surface (reference) and the fit curve used to obtain the OPD (h) to radial coordinate (r) conversion.

Fig. 4.
Fig. 4.

(a) Schematic of the sample and the optical fields at the sample arm. (b) FFT(I) as a function of the normalized optical path distance, for a typical measurement. (An arbitrary zero was selected for the horizontal axis).

Fig. 5.
Fig. 5.

(a) Thickness of the container wall as a function of the angle θ (defined as in Fig. 1) for a constant z value. (b) Photo of the sample.

Fig. 6.
Fig. 6.

3D image of a sector of the sample shown in Fig. 5(b). The Y, X, and Z axes are placed only for clarity.

Fig. 7.
Fig. 7.

(a) Schematic of the sample and the optical fields at the sample arm. (b) FFT(I) as a function of the OPD (h) for a typical measurement.

Fig. 8.
Fig. 8.

Reconstruction of the bubble shape and its location within the sample. An arbitrary zero in the external wall position was selected for the radial distance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(k)=I0(k)(1+β2+βcos(k·h)),
FT(I)(H)=Γ(H)(δ(H)+β·δ(Hh)+β·δ(H+h)),
h1=OPD(E1Er),h2=ng·d=OPD(E1E4),h3=h1+ng·d=OPD(E4Er).
h1=OPD(E1E2),h2=OPD(E1E3),h3=ng·d=OPD(E1E4).

Metrics