Abstract

The intersatellite microwave photonics link with an optical preamplifier is affected by third-order intermodulation distortion under dual-tone modulation and pointing errors due to beam wander, which would greatly degrade the link performance. An exact analytical expression for signal-to-noise and distortion ratio (SNDR) is derived considering the signal fade caused by the pointing errors of transceiver. It is shown that, given the desired SNDR and the rms random pointing jitter, an optimum modulation index of Mach–Zehnder modulator exists that minimizes laser output power. Moreover, an optimized model for laser output power and modulation index is established. The effects of the optical preamplifier gain and noise figure on the optimum link performance are also examined. Numerical results show that the minimum laser output power required to achieve the desired SNDR is more sensitive to the preamplifier noise figure. For an SNDR of 20 dB, doubling the preamplifier noise figure results in an 8.95 dB increase in minimum laser output power at the rms pointing jitter of 0.5 μrad.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  2. M. Sotom, B. Benazet, A. L. Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceeding of ECOC (IEEE, 2009), paper 10.6.3.
  3. A. Bensoussan and M. Vanzi, “Optoelectronic devices product assurance guideline for space application,” in Proceeding of International Conference on Space Optics (ESA Publications Division, 2010), pp 8–13.
  4. L. H. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach–Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
    [CrossRef]
  5. L. H. Cheng, S. Aditya, Z. H. Li, and A. Nirmalathas, “Generalized analysis of subcarrier multiplexing in dispersive fiber-optic links using Mach–Zehnder external modulator,” J. Lightwave Technol. 24, 2296–2304 (2006).
    [CrossRef]
  6. B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett. 19, 729–731 (2007).
    [CrossRef]
  7. S. K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetternan, “Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach–Zehnder modulator,” Opt. Express 19, 7865–7871 (2011).
    [CrossRef]
  8. A. Polishuk and S. Arnon, “Optimization of a laser satellite communication system with an optical preamplifier,” J. Opt. Soc. Am. A 21, 1307–1315 (2004).
    [CrossRef]
  9. S. Arnon, “Performance of a laser μsatellite network with an optical preamplifier,” J. Opt. Soc. Am. A 22, 708–715 (2005).
    [CrossRef]
  10. X. Liu, “Optimal transmitter power of an intersatellite optical communication system with reciprocal Pareto fading,” Appl. Opt. 49, 915–919 (2010).
    [CrossRef]
  11. X. Liu, “Optimization of satellite optical transmission subject to log-square-Hoyt fading,” IEEE International Conference on Communications (ICC) (IEEE, 2011), Vol. 7, pp. 11–15.
  12. Z. H. Zhu, S. H. Zhao, Y. J. Li, X. C. Chu, W. Jiang, X. Wang, and G. H. Zhao, “Optimization of inter-satellite microwave photonics links by utilizing an optical preamplifier under dual-tone modulation,” Appl. Opt. 51, 6818–6823 (2012).
    [CrossRef]
  13. V. J. Urick, M. E. Godinez, P. S. Devgan, J. D. Mckinney, and F. Bucholtz, “Analysis of an analog fiber-optic link employing a low-biased Mach–Zehnder modulator followed by an erbium-doped fiber amplifier,” J. Lightwave Technol. 27, 2013–2019 (2009).
    [CrossRef]

2012 (1)

2011 (1)

2010 (1)

2009 (2)

2007 (1)

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett. 19, 729–731 (2007).
[CrossRef]

2006 (1)

2005 (2)

L. H. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach–Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
[CrossRef]

S. Arnon, “Performance of a laser μsatellite network with an optical preamplifier,” J. Opt. Soc. Am. A 22, 708–715 (2005).
[CrossRef]

2004 (1)

Aditya, S.

L. H. Cheng, S. Aditya, Z. H. Li, and A. Nirmalathas, “Generalized analysis of subcarrier multiplexing in dispersive fiber-optic links using Mach–Zehnder external modulator,” J. Lightwave Technol. 24, 2296–2304 (2006).
[CrossRef]

L. H. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach–Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
[CrossRef]

Arnon, S.

Benazet, B.

M. Sotom, B. Benazet, A. L. Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceeding of ECOC (IEEE, 2009), paper 10.6.3.

Bensoussan, A.

A. Bensoussan and M. Vanzi, “Optoelectronic devices product assurance guideline for space application,” in Proceeding of International Conference on Space Optics (ESA Publications Division, 2010), pp 8–13.

Bucholtz, F.

Cheng, L. H.

L. H. Cheng, S. Aditya, Z. H. Li, and A. Nirmalathas, “Generalized analysis of subcarrier multiplexing in dispersive fiber-optic links using Mach–Zehnder external modulator,” J. Lightwave Technol. 24, 2296–2304 (2006).
[CrossRef]

L. H. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach–Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
[CrossRef]

Chu, X. C.

Dalton, L. R.

Devgan, P. S.

Fetternan, H. R.

Godinez, M. E.

Haas, B. M.

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett. 19, 729–731 (2007).
[CrossRef]

Jiang, W.

Kernec, A. L.

M. Sotom, B. Benazet, A. L. Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceeding of ECOC (IEEE, 2009), paper 10.6.3.

Kim, S. K.

Li, Y. J.

Li, Z. H.

Liu, W.

Liu, X.

X. Liu, “Optimal transmitter power of an intersatellite optical communication system with reciprocal Pareto fading,” Appl. Opt. 49, 915–919 (2010).
[CrossRef]

X. Liu, “Optimization of satellite optical transmission subject to log-square-Hoyt fading,” IEEE International Conference on Communications (ICC) (IEEE, 2011), Vol. 7, pp. 11–15.

Maignan, M.

M. Sotom, B. Benazet, A. L. Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceeding of ECOC (IEEE, 2009), paper 10.6.3.

Mckinney, J. D.

Murphy, T. E.

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett. 19, 729–731 (2007).
[CrossRef]

Nirmalathas, A.

L. H. Cheng, S. Aditya, Z. H. Li, and A. Nirmalathas, “Generalized analysis of subcarrier multiplexing in dispersive fiber-optic links using Mach–Zehnder external modulator,” J. Lightwave Technol. 24, 2296–2304 (2006).
[CrossRef]

L. H. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach–Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
[CrossRef]

Pei, Q.

Polishuk, A.

Sotom, M.

M. Sotom, B. Benazet, A. L. Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceeding of ECOC (IEEE, 2009), paper 10.6.3.

Urick, V. J.

Vanzi, M.

A. Bensoussan and M. Vanzi, “Optoelectronic devices product assurance guideline for space application,” in Proceeding of International Conference on Space Optics (ESA Publications Division, 2010), pp 8–13.

Wang, X.

Yao, J. P.

Zhao, G. H.

Zhao, S. H.

Zhu, Z. H.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (2)

L. H. Cheng, S. Aditya, and A. Nirmalathas, “An exact analytical model for dispersive transmission in microwave fiber-optic links using Mach–Zehnder external modulator,” IEEE Photon. Technol. Lett. 17, 1525–1527 (2005).
[CrossRef]

B. M. Haas and T. E. Murphy, “A simple, linearized, phase-modulated analog optical transmission system,” IEEE Photon. Technol. Lett. 19, 729–731 (2007).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (2)

Opt. Express (1)

Other (3)

M. Sotom, B. Benazet, A. L. Kernec, and M. Maignan, “Microwave photonic technologies for flexible satellite telecom payloads,” in Proceeding of ECOC (IEEE, 2009), paper 10.6.3.

A. Bensoussan and M. Vanzi, “Optoelectronic devices product assurance guideline for space application,” in Proceeding of International Conference on Space Optics (ESA Publications Division, 2010), pp 8–13.

X. Liu, “Optimization of satellite optical transmission subject to log-square-Hoyt fading,” IEEE International Conference on Communications (ICC) (IEEE, 2011), Vol. 7, pp. 11–15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Power penalty for the desired SNDR as a function of the rms pointing jitter.

Fig. 2.
Fig. 2.

Minimum laser output power for 20 dB SNDR as a function of modulation index for different rms pointing jitter values.

Fig. 3.
Fig. 3.

Minimum laser output power as a function of SNDR for three values of preamplifier gain.

Fig. 4.
Fig. 4.

Optimum modulation index as a function of SNDR for three values of preamplifier gain.

Fig. 5.
Fig. 5.

Minimum laser output power as a function of SNDR for three values of preamplifier noise figure.

Fig. 6.
Fig. 6.

Optimum modulation index as a function of SNDR for three values of preamplifier noise figure.

Tables (1)

Tables Icon

Table 1. Link Budget Parameters

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

f(εt)=εtσt2eεt22σt2,
f(εr)=εrσr2eεr22σr2,
Pr(εt,εr,t)=Pmzm(t)GedfaGtGrLGpreLt(εt)Lr(εr),
Pmzm(t)=14α2Poptin{M=+N=+jM+NJM(0)JN(0)e[jMw1t+jNw2t+j(M+N)π]+M=+N=+jM+NJM(2m)JN(2m)e(jMw1t+jNw2tjθ)+M=+N=+jM+NJM(2m)JN(2m)e[jMw1t+jNw2t+j(M+N)π+jθ]+M=+N=+jM+NJM(0)JN(0)e(jMw1t+jNw2t)}
Gedfa=G01+(G0PoutmzmPoutmax)β=G01+(G0α2Poptin[1+cosθJ02(2m)]2Poutmax)β
Gt=Gr=G=η(πDλ)2
L=(λ4πz)2
Lt(εt)=eGtεt2
Lr(εr)=eGrεr2
Pw1=1200{Rα2PoptinsinθJ1(2m)J0(2m)G01+{G0α2Poptin[1+cosθJ02(2m)]2Poutmax}β(λ4πz)2[η(πDλ)2]2GpreeG(εt2+εr2)}2εtσt2eεt22σt2εrσr2eεr22σr2Rldεtdεr,
χ=εt2+εr2.
f(χ)=aχeχ2σχ2U(χ),
a=1(σχ2)4Γ(2).
Γ(x)=0tx1etdt1x2.
Γ(x+1)=xΓ(x).
Pw1=120{Rα2PoptinsinθJ1(2m)J0(2m)G01+{G0α2Poptin[1+cosθJ02(2m)]2Poutmax}β(λ4πz)2[η(πDλ)2]2GpreeGχ}2aχeχ2σχ2Rldχ=h1[h2(4Gσχ2+1)]2Rl,
h1=[Rα2PoptinsinθJ1(2m)J0(2m)]22,
h2=G01+{G0α2Poptin[1+cosθJ02(2m)]2Poutmax}β(λ4πz)2[η(πDλ)2]2Gpre
P2w1w2=h1J22(2m)J02(2m)[h2(4Gσχ2+1)]2Rl.
σth2=(Grf+1)k0TBel,
σase-ase2={R[Pase1G2LGpre(2Gσχ2+1)2+Pase2]}2RlBoBel,
Pase1=qFn1(Gedfa1)R
Pase2=qFn2(Gpre1)R
σsase22=2R2RlPase2{012α2Poptin[1+cosθJ02(2m)]GedfaG2LGpreeGχaχeχ2σχ2dχ}Bel=2R2RlPase2[Poutmzmh2(2Gσχ2+1)2]Bel.
SNDR=h1[h2(4Gσχ2+1)]2Rlh1J22(2m)J02(2m)[h2(4Gσχ2+1)]2Rl+(Grf+1)k0TBel+{R[Pase1G2LGpre(2Gσχ2+1)2+Pase2]}2RlBoBel+2R2RlPase2[Poutmzmh2(2Gσχ2+1)2]Bel.
SNDRm=F1(Poptin,m,σχ)mF2(Poptin,m,σχ)F1(Poptin,m,σχ)F2(Poptin,m,σχ)m[F2(Poptin,m,σχ)]2=0,
F1(Poptin,m,σχ)=h1(Poptin,m)[h2(Poptin,m)(4Gσχ2+1)]2,
F2(Poptin,m,σχ)=h1J22(2m)J02(2m)[h2(4Gσχ2+1)]2Rl+(Grf+1)k0TBel+{R[Pase1G2LGpre(2Gσχ2+1)2+Pase2]}2RlBoBel+2R2RlPase2[Poutmzmh2(2Gσχ2+1)2]Bel.
2Poptin/m2>0,
MinimizePoptin,subject toSNDR=b,(b>0),
h1[h2(4Gσχ2+1)]2Rlh1J22(2m)J02(2m)[h2(4Gσχ2+1)]2Rl+2R2RlPase2[Poutmzmh2(2Gσχ2+1)2]Bel=b.
Poptin=4bk34k1m2bk1m64bk2k3,
k1=α2(sinθ)2G0G2LGpre(2Gσχ2+1)22,
k2=G0α2(1+cosθ)2Poutmax,
k3=Pase2(4Gσχ2+1)2(1+cosθ)Bel.
Poptinm=4bk3m(8k16bk2m4)(4k1m2bk1m64bk2k3)2.
ms=(4k13bk2)14.
Poptinm=Poptin2(6bk2m58k1m)4bk3.
2Poptinm2=14bk3[2PoptinPoptinm(6bk2m58k1m)+Poptin2(30bk2m48k1)].

Metrics