Abstract

We present an ex vivo study for the first time, to the best of our knowledge, in multispectral photoacoustic imaging (PAI) of tissue denaturation induced by high-intensity focused ultrasound (HIFU) in this paper. Tissue of bovine muscle was thermally treated in a heated water bath and by HIFU, and then was imaged using a multispectral photoacoustic approach. Light at multiple optical wavelengths between 700 and 900 nm was delivered to the treated bovine muscle tissue to excite the photoacoustic signal. Apparent tissue denaturation has been observed in multispectral photoacoustic images after being treated in a water bath and by HIFU. It is interesting that the denaturation is more striking at shorter optical wavelength photoacoustic images than at longer optical wavelength photoacoustic images. Multispectral photoacoustic images of the tissue denaturation were further analyzed and the photoacoustic spectrums of the denaturized tissue were calculated in this paper. This study suggests that a multispectral PAI approach might be a promising tool to evaluate tissue denaturation induced by HIFU treatment.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Clement, “Perspectives in clinical uses of high-intensity focused ultrasound,” Ultrasonics 42, 1087–1093 (2004).
    [CrossRef]
  2. T. A. Leslie and J. E. Kennedy, “High-intensity focused ultrasound principles, current uses, and potential for the future,” Ultrasound Q. 22, 263–272 (2006).
    [CrossRef]
  3. J. E. Kennedy, G. R. ter Haar, and D. Cranston, “High intensity focused ultrasound: surgery of the future?,” Br. J. Radiol. 76, 590–599 (2003).
    [CrossRef]
  4. J. E. Kennedy, “High-intensity focused ultrasound in the treatment of solid tumours,” Nat. Rev. Cancer 5, 321–327 (2005).
    [CrossRef]
  5. S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am. J. Obstet. Gynecol. 183, 6–11 (2000).
    [CrossRef]
  6. E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
    [CrossRef]
  7. J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).
  8. J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004).
    [CrossRef]
  9. R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
    [CrossRef]
  10. S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).
  11. A. Blana, B. Walter, S. Rogenhofer, and W. F. Wieland, “High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience,” Urology 63, 297–300 (2004).
    [CrossRef]
  12. F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003).
    [CrossRef]
  13. K. Hynynen, O. Pomeroy, and D. N. Smith, “MR-imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study,” Radiology 219, 176–185 (2001).
  14. K. Hynynen, A. H. Chung, V. Colucci, and F. A. Jolesz, “Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo,” Ultrasound Med. Biol. 22, 193–201 (1996).
    [CrossRef]
  15. A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002).
    [CrossRef]
  16. Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).
  17. K. Hynynen, “MRI-guided focused ultrasound treatments,” Ultrasonics 50, 221–229 (2010).
    [CrossRef]
  18. R. Mass-Moreno, C. A. Damianou, and N. T. Sanghvi, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study,” J. Acoust. Soc. Am. 100, 2522–2530 (1996).
    [CrossRef]
  19. A. Anand and P. Kaczkowski, “Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating,” Ultrasound Med. Biol. 34, 1449–1464 (2008).
    [CrossRef]
  20. K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D 38, 2645–2653 (2005).
    [CrossRef]
  21. T. D. Khokhlova, I. M. Pelivanov, O. A. Sapozhnikov, V. S. Solomatin, and A. A. Karabutov, “Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments,” Quantum Electron. 36, 1097–1102 (2006).
    [CrossRef]
  22. A. R. Funke, J.-F. Aubry, M. Fink, A.-C. Boccara, and E. Bossy, “Photoacoustic guidance of high intensity focused ultrasound with selective optical contrasts and time-reversal,” Appl. Phys. Lett. 94, 054102 (2009).
    [CrossRef]
  23. P. V. Chitnis, H. P. Brecht, R. Su, and A. A. Oraevsky, “Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue,” J. Biomed. Opt. 15, 021313 (2010).
    [CrossRef]
  24. H. Cui, and X. Yang, “In vivo imaging and treatment of solid tumor using integrated photoacoustic imaging and high intensity focused ultrasound system,” Med. Phys. 37, 4777–4781 (2010).
    [CrossRef]
  25. A. Prost, A. R. Funke, M. Tanter, and E. Bossy, “Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array,” J. Biomed. Opt. 17, 061205 (2012).
    [CrossRef]
  26. A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, 2003), Vol. PM125, Chap. 34, pp. 34/1–34/34.
  27. Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: an emerging optical modality in diagnostic and theranostic medicine,” Biosens. Bioelectron. 2, 1000108 (2011).
    [CrossRef]
  28. S. Y. Emelianov, P. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
    [CrossRef]
  29. H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
    [CrossRef]
  30. A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
    [CrossRef]
  31. Z. Yuan and H. Jiang, “Simultaneous recovery of tissue physiological and acoustic properties and the criteria for heterogeneous media by quantitative photoacoustic tomography,” Opt. Lett. 34, 1714–1716 (2009).
    [CrossRef]
  32. Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method,” Opt. Express 15, 18076–18081 (2007).
    [CrossRef]
  33. Z. Yuan, Q. Zhang, and H. Jiang, “Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,” Opt. Express 14, 6749–6754 (2006).
    [CrossRef]
  34. L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32, 2556–2558 (2007).
    [CrossRef]
  35. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
    [CrossRef]
  36. J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).
    [CrossRef]
  37. A. A. Oraevsky, A. A. Karabutov, and S. V. Solomatin, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4526, 6–11 (2001).
    [CrossRef]
  38. S. Manohar, A. Kharine, C. G. van Hespen, J. W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Phys. Med. Biol. 50, 2543–2557 (2005).
    [CrossRef]
  39. L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, and H. Xie, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20, 8726–8731 (2012).
    [CrossRef]
  40. A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
    [CrossRef]
  41. L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
    [CrossRef]
  42. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
    [CrossRef]
  43. X. Wang, X. Xie, G. Ku, and L. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
    [CrossRef]
  44. Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Noninvasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921–1931 (2008).
    [CrossRef]
  45. Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14, 064002 (2009).
    [CrossRef]
  46. Y. Sun, E. S. Sobel, and H. Jiang, “First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints,” Med. Phys. 38, 4009–4017 (2011).
    [CrossRef]
  47. J. Laufer, E. Zhang, and P. Beard, “Quantitative in vivomeasurements of blood oxygen saturation using multiwavelength photoacoustic imaging,” Proc. SPIE 6437, 64371Z (2007).
    [CrossRef]
  48. American National Standard for the Safe Use Lasers in the Health Care Environment (Laser Institute of America, 1996).
  49. J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29, 205–212 (2001).
    [CrossRef]
  50. A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
    [CrossRef]
  51. W. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chemistry 37, 1633–1638 (1991).

2012 (3)

A. Prost, A. R. Funke, M. Tanter, and E. Bossy, “Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array,” J. Biomed. Opt. 17, 061205 (2012).
[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[CrossRef]

L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, and H. Xie, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20, 8726–8731 (2012).
[CrossRef]

2011 (2)

Y. Sun, E. S. Sobel, and H. Jiang, “First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints,” Med. Phys. 38, 4009–4017 (2011).
[CrossRef]

Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: an emerging optical modality in diagnostic and theranostic medicine,” Biosens. Bioelectron. 2, 1000108 (2011).
[CrossRef]

2010 (4)

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).
[CrossRef]

P. V. Chitnis, H. P. Brecht, R. Su, and A. A. Oraevsky, “Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue,” J. Biomed. Opt. 15, 021313 (2010).
[CrossRef]

H. Cui, and X. Yang, “In vivo imaging and treatment of solid tumor using integrated photoacoustic imaging and high intensity focused ultrasound system,” Med. Phys. 37, 4777–4781 (2010).
[CrossRef]

K. Hynynen, “MRI-guided focused ultrasound treatments,” Ultrasonics 50, 221–229 (2010).
[CrossRef]

2009 (5)

Z. Yuan and H. Jiang, “Simultaneous recovery of tissue physiological and acoustic properties and the criteria for heterogeneous media by quantitative photoacoustic tomography,” Opt. Lett. 34, 1714–1716 (2009).
[CrossRef]

A. R. Funke, J.-F. Aubry, M. Fink, A.-C. Boccara, and E. Bossy, “Photoacoustic guidance of high intensity focused ultrasound with selective optical contrasts and time-reversal,” Appl. Phys. Lett. 94, 054102 (2009).
[CrossRef]

S. Y. Emelianov, P. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
[CrossRef]

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14, 064002 (2009).
[CrossRef]

2008 (3)

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Noninvasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921–1931 (2008).
[CrossRef]

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

A. Anand and P. Kaczkowski, “Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating,” Ultrasound Med. Biol. 34, 1449–1464 (2008).
[CrossRef]

2007 (3)

2006 (6)

X. Wang, X. Xie, G. Ku, and L. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef]

Z. Yuan, Q. Zhang, and H. Jiang, “Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,” Opt. Express 14, 6749–6754 (2006).
[CrossRef]

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

T. D. Khokhlova, I. M. Pelivanov, O. A. Sapozhnikov, V. S. Solomatin, and A. A. Karabutov, “Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments,” Quantum Electron. 36, 1097–1102 (2006).
[CrossRef]

T. A. Leslie and J. E. Kennedy, “High-intensity focused ultrasound principles, current uses, and potential for the future,” Ultrasound Q. 22, 263–272 (2006).
[CrossRef]

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

2005 (4)

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

J. E. Kennedy, “High-intensity focused ultrasound in the treatment of solid tumours,” Nat. Rev. Cancer 5, 321–327 (2005).
[CrossRef]

K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D 38, 2645–2653 (2005).
[CrossRef]

S. Manohar, A. Kharine, C. G. van Hespen, J. W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

2004 (4)

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004).
[CrossRef]

G. T. Clement, “Perspectives in clinical uses of high-intensity focused ultrasound,” Ultrasonics 42, 1087–1093 (2004).
[CrossRef]

A. Blana, B. Walter, S. Rogenhofer, and W. F. Wieland, “High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience,” Urology 63, 297–300 (2004).
[CrossRef]

2003 (4)

F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003).
[CrossRef]

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

J. E. Kennedy, G. R. ter Haar, and D. Cranston, “High intensity focused ultrasound: surgery of the future?,” Br. J. Radiol. 76, 590–599 (2003).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

2002 (2)

A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002).
[CrossRef]

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[CrossRef]

2001 (4)

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, and S. V. Solomatin, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4526, 6–11 (2001).
[CrossRef]

K. Hynynen, O. Pomeroy, and D. N. Smith, “MR-imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study,” Radiology 219, 176–185 (2001).

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29, 205–212 (2001).
[CrossRef]

2000 (1)

S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am. J. Obstet. Gynecol. 183, 6–11 (2000).
[CrossRef]

1998 (1)

1996 (2)

K. Hynynen, A. H. Chung, V. Colucci, and F. A. Jolesz, “Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo,” Ultrasound Med. Biol. 22, 193–201 (1996).
[CrossRef]

R. Mass-Moreno, C. A. Damianou, and N. T. Sanghvi, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study,” J. Acoust. Soc. Am. 100, 2522–2530 (1996).
[CrossRef]

1991 (1)

W. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chemistry 37, 1633–1638 (1991).

Anand, A.

A. Anand and P. Kaczkowski, “Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating,” Ultrasound Med. Biol. 34, 1449–1464 (2008).
[CrossRef]

Andersson-Engels, S.

Anwarb, M. S.

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

Arridge, S. R.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[CrossRef]

Aubry, J.-F.

A. R. Funke, J.-F. Aubry, M. Fink, A.-C. Boccara, and E. Bossy, “Photoacoustic guidance of high intensity focused ultrasound with selective optical contrasts and time-reversal,” Appl. Phys. Lett. 94, 054102 (2009).
[CrossRef]

Bai, J.

F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003).
[CrossRef]

Beard, P.

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).
[CrossRef]

J. Laufer, E. Zhang, and P. Beard, “Quantitative in vivomeasurements of blood oxygen saturation using multiwavelength photoacoustic imaging,” Proc. SPIE 6437, 64371Z (2007).
[CrossRef]

Beard, P. C.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[CrossRef]

Berger, A.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef]

Bevilacqua, F.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef]

Blana, A.

A. Blana, B. Walter, S. Rogenhofer, and W. F. Wieland, “High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience,” Urology 63, 297–300 (2004).
[CrossRef]

Boccara, A.-C.

A. R. Funke, J.-F. Aubry, M. Fink, A.-C. Boccara, and E. Bossy, “Photoacoustic guidance of high intensity focused ultrasound with selective optical contrasts and time-reversal,” Appl. Phys. Lett. 94, 054102 (2009).
[CrossRef]

Bodapati, S.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Bossy, E.

A. Prost, A. R. Funke, M. Tanter, and E. Bossy, “Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array,” J. Biomed. Opt. 17, 061205 (2012).
[CrossRef]

A. R. Funke, J.-F. Aubry, M. Fink, A.-C. Boccara, and E. Bossy, “Photoacoustic guidance of high intensity focused ultrasound with selective optical contrasts and time-reversal,” Appl. Phys. Lett. 94, 054102 (2009).
[CrossRef]

Boucharda, L. S.

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

Brecht, H. P.

P. V. Chitnis, H. P. Brecht, R. Su, and A. A. Oraevsky, “Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue,” J. Biomed. Opt. 15, 021313 (2010).
[CrossRef]

Buhr, H. J.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29, 205–212 (2001).
[CrossRef]

Butler, J.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef]

Buursma, A.

W. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chemistry 37, 1633–1638 (1991).

Cao, Y. D.

F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003).
[CrossRef]

Carney, P. R.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Noninvasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921–1931 (2008).
[CrossRef]

Cerussi, A. E.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef]

Chaussy, C.

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

Chen, F. F.

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

Chen, H.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Noninvasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921–1931 (2008).
[CrossRef]

Chen, R.

Chen, W. Z.

F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003).
[CrossRef]

Chen, X.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Cheng, Z.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Chi, E. Y.

S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am. J. Obstet. Gynecol. 183, 6–11 (2000).
[CrossRef]

Chitnis, P. V.

P. V. Chitnis, H. P. Brecht, R. Su, and A. A. Oraevsky, “Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue,” J. Biomed. Opt. 15, 021313 (2010).
[CrossRef]

Chung, A. H.

K. Hynynen, A. H. Chung, V. Colucci, and F. A. Jolesz, “Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo,” Ultrasound Med. Biol. 22, 193–201 (1996).
[CrossRef]

Clement, G. T.

G. T. Clement, “Perspectives in clinical uses of high-intensity focused ultrasound,” Ultrasonics 42, 1087–1093 (2004).
[CrossRef]

Cohen, Z. R.

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

Colucci, V.

K. Hynynen, A. H. Chung, V. Colucci, and F. A. Jolesz, “Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo,” Ultrasound Med. Biol. 22, 193–201 (1996).
[CrossRef]

Cox, B.

Cranston, D.

J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004).
[CrossRef]

J. E. Kennedy, G. R. ter Haar, and D. Cranston, “High intensity focused ultrasound: surgery of the future?,” Br. J. Radiol. 76, 590–599 (2003).
[CrossRef]

Cranston, D. W.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

Crum, L. A.

A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002).
[CrossRef]

S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am. J. Obstet. Gynecol. 183, 6–11 (2000).
[CrossRef]

Cui, H.

H. Cui, and X. Yang, “In vivo imaging and treatment of solid tumor using integrated photoacoustic imaging and high intensity focused ultrasound system,” Med. Phys. 37, 4777–4781 (2010).
[CrossRef]

Dai, H.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Damianou, C. A.

R. Mass-Moreno, C. A. Damianou, and N. T. Sanghvi, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study,” J. Acoust. Soc. Am. 100, 2522–2530 (1996).
[CrossRef]

de la Rosette, J. J.

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

Desgrandchamps, F.

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

Eggert, J.

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[CrossRef]

Emelianov, S. Y.

S. Y. Emelianov, P. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
[CrossRef]

Esenaliev, R. O.

K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D 38, 2645–2653 (2005).
[CrossRef]

Faibel, M.

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

Fajardo, L.

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[CrossRef]

Farrell, L.

A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002).
[CrossRef]

Fink, M.

A. R. Funke, J.-F. Aubry, M. Fink, A.-C. Boccara, and E. Bossy, “Photoacoustic guidance of high intensity focused ultrasound with selective optical contrasts and time-reversal,” Appl. Phys. Lett. 94, 054102 (2009).
[CrossRef]

Friend, P. J.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

Fujimoto, V. Y.

S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am. J. Obstet. Gynecol. 183, 6–11 (2000).
[CrossRef]

Funke, A. R.

A. Prost, A. R. Funke, M. Tanter, and E. Bossy, “Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array,” J. Biomed. Opt. 17, 061205 (2012).
[CrossRef]

A. R. Funke, J.-F. Aubry, M. Fink, A.-C. Boccara, and E. Bossy, “Photoacoustic guidance of high intensity focused ultrasound with selective optical contrasts and time-reversal,” Appl. Phys. Lett. 94, 054102 (2009).
[CrossRef]

Gambhir, S. S.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Gastout, B.

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

Gedroyc, W. M.

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Gelet, A.

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

Germer, C. T.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29, 205–212 (2001).
[CrossRef]

Gleeson, F. V.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004).
[CrossRef]

Gray, J. W.

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

Grobmyer, S. R.

Gutwein, L. G.

Hadani, M.

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

Hann, B.

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

Harnof, S.

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

Hengst, S.

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

Hesley, G.

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

Hindley, J.

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Holcombe, R.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef]

Hynnen, K.

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Hynynen, K.

K. Hynynen, “MRI-guided focused ultrasound treatments,” Ultrasonics 50, 221–229 (2010).
[CrossRef]

K. Hynynen, O. Pomeroy, and D. N. Smith, “MR-imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study,” Radiology 219, 176–185 (2001).

K. Hynynen, A. H. Chung, V. Colucci, and F. A. Jolesz, “Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo,” Ultrasound Med. Biol. 22, 193–201 (1996).
[CrossRef]

Iftimia, N.

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[CrossRef]

Illing, R. O.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

Inbar, Y.

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Isbert, C.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29, 205–212 (2001).
[CrossRef]

Itzchak, Y.

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Jakubowski, D.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef]

Jiang, H.

Y. Sun, E. S. Sobel, and H. Jiang, “First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints,” Med. Phys. 38, 4009–4017 (2011).
[CrossRef]

Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: an emerging optical modality in diagnostic and theranostic medicine,” Biosens. Bioelectron. 2, 1000108 (2011).
[CrossRef]

Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14, 064002 (2009).
[CrossRef]

Z. Yuan and H. Jiang, “Simultaneous recovery of tissue physiological and acoustic properties and the criteria for heterogeneous media by quantitative photoacoustic tomography,” Opt. Lett. 34, 1714–1716 (2009).
[CrossRef]

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Noninvasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921–1931 (2008).
[CrossRef]

Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method,” Opt. Express 15, 18076–18081 (2007).
[CrossRef]

L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32, 2556–2558 (2007).
[CrossRef]

Z. Yuan, Q. Zhang, and H. Jiang, “Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,” Opt. Express 14, 6749–6754 (2006).
[CrossRef]

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[CrossRef]

Jolesz, F. A.

K. Hynynen, A. H. Chung, V. Colucci, and F. A. Jolesz, “Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo,” Ultrasound Med. Biol. 22, 193–201 (1996).
[CrossRef]

Kaczkowski, P.

A. Anand and P. Kaczkowski, “Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating,” Ultrasound Med. Biol. 34, 1449–1464 (2008).
[CrossRef]

Karabutov, A. A.

T. D. Khokhlova, I. M. Pelivanov, O. A. Sapozhnikov, V. S. Solomatin, and A. A. Karabutov, “Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments,” Quantum Electron. 36, 1097–1102 (2006).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, and S. V. Solomatin, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4526, 6–11 (2001).
[CrossRef]

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, 2003), Vol. PM125, Chap. 34, pp. 34/1–34/34.

Kennedy, J. E.

T. A. Leslie and J. E. Kennedy, “High-intensity focused ultrasound principles, current uses, and potential for the future,” Ultrasound Q. 22, 263–272 (2006).
[CrossRef]

J. E. Kennedy, “High-intensity focused ultrasound in the treatment of solid tumours,” Nat. Rev. Cancer 5, 321–327 (2005).
[CrossRef]

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004).
[CrossRef]

J. E. Kennedy, G. R. ter Haar, and D. Cranston, “High intensity focused ultrasound: surgery of the future?,” Br. J. Radiol. 76, 590–599 (2003).
[CrossRef]

Keren, S.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Kharine, A.

S. Manohar, A. Kharine, C. G. van Hespen, J. W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

Khokhlova, T. D.

T. D. Khokhlova, I. M. Pelivanov, O. A. Sapozhnikov, V. S. Solomatin, and A. A. Karabutov, “Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments,” Quantum Electron. 36, 1097–1102 (2006).
[CrossRef]

Khuri-Yakub, B. T.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Kiel, H. J.

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

Kim, H. S.

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

Klove, K.

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[CrossRef]

Ku, G.

X. Wang, X. Xie, G. Ku, and L. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Larin, K. V.

K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D 38, 2645–2653 (2005).
[CrossRef]

Larina, I. V.

K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D 38, 2645–2653 (2005).
[CrossRef]

Laufer, J.

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).
[CrossRef]

J. Laufer, E. Zhang, and P. Beard, “Quantitative in vivomeasurements of blood oxygen saturation using multiwavelength photoacoustic imaging,” Proc. SPIE 6437, 64371Z (2007).
[CrossRef]

Laufer, J. G.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[CrossRef]

le Duc, A.

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

Leslie, T. A.

T. A. Leslie and J. E. Kennedy, “High-intensity focused ultrasound principles, current uses, and potential for the future,” Ultrasound Q. 22, 263–272 (2006).
[CrossRef]

Levi, J.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Li, P.

S. Y. Emelianov, P. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
[CrossRef]

Liao, W.

Liu, D. L.

Liu, G. L.

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

Liu, Z.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Noninvasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921–1931 (2008).
[CrossRef]

Ma, T.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Macdanold, N.

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Maier, S. E.

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

Manohar, S.

S. Manohar, A. Kharine, C. G. van Hespen, J. W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

Mardor, Y.

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

Martin, R. W.

S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am. J. Obstet. Gynecol. 183, 6–11 (2000).
[CrossRef]

Mass-Moreno, R.

R. Mass-Moreno, C. A. Damianou, and N. T. Sanghvi, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study,” J. Acoust. Soc. Am. 100, 2522–2530 (1996).
[CrossRef]

Meeuwsen-Van der Roest, W. P.

W. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chemistry 37, 1633–1638 (1991).

Mesiwala, A. H.

A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002).
[CrossRef]

Middleton, M. R.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004).
[CrossRef]

Mourad, P. D.

A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002).
[CrossRef]

Müller, G.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29, 205–212 (2001).
[CrossRef]

Nass, D.

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

Nilsson, A. M.

O’Donnell, M.

S. Y. Emelianov, P. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
[CrossRef]

O’Neill, B. E.

Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: an emerging optical modality in diagnostic and theranostic medicine,” Biosens. Bioelectron. 2, 1000108 (2011).
[CrossRef]

Oraevsky, A. A.

P. V. Chitnis, H. P. Brecht, R. Su, and A. A. Oraevsky, “Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue,” J. Biomed. Opt. 15, 021313 (2010).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, and S. V. Solomatin, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4526, 6–11 (2001).
[CrossRef]

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, 2003), Vol. PM125, Chap. 34, pp. 34/1–34/34.

Oralkan, O.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Pelivanov, I. M.

T. D. Khokhlova, I. M. Pelivanov, O. A. Sapozhnikov, V. S. Solomatin, and A. A. Karabutov, “Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments,” Quantum Electron. 36, 1097–1102 (2006).
[CrossRef]

Phillips, R. R.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004).
[CrossRef]

Pines, A.

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

Pomeroy, O.

K. Hynynen, O. Pomeroy, and D. N. Smith, “MR-imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study,” Radiology 219, 176–185 (2001).

Prost, A.

A. Prost, A. R. Funke, M. Tanter, and E. Bossy, “Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array,” J. Biomed. Opt. 17, 061205 (2012).
[CrossRef]

Protheroe, A. S.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

Rabinovici, J.

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Ram, Z.

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

Regan, L.

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Ritz, J. P.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29, 205–212 (2001).
[CrossRef]

Rogenhofer, S.

A. Blana, B. Walter, S. Rogenhofer, and W. F. Wieland, “High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience,” Urology 63, 297–300 (2004).
[CrossRef]

Roggan, A.

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29, 205–212 (2001).
[CrossRef]

Roper, S. N.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Noninvasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921–1931 (2008).
[CrossRef]

Sanghvi, N. T.

R. Mass-Moreno, C. A. Damianou, and N. T. Sanghvi, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study,” J. Acoust. Soc. Am. 100, 2522–2530 (1996).
[CrossRef]

Sapozhnikov, O. A.

T. D. Khokhlova, I. M. Pelivanov, O. A. Sapozhnikov, V. S. Solomatin, and A. A. Karabutov, “Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments,” Quantum Electron. 36, 1097–1102 (2006).
[CrossRef]

Shah, N.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef]

Silbergeld, D. L.

A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002).
[CrossRef]

Smith, B. R.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Smith, D. N.

K. Hynynen, O. Pomeroy, and D. N. Smith, “MR-imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study,” Radiology 219, 176–185 (2001).

Sobel, E.

Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14, 064002 (2009).
[CrossRef]

Sobel, E. S.

Y. Sun, E. S. Sobel, and H. Jiang, “First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints,” Med. Phys. 38, 4009–4017 (2011).
[CrossRef]

Solomatin, S. V.

A. A. Oraevsky, A. A. Karabutov, and S. V. Solomatin, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4526, 6–11 (2001).
[CrossRef]

Solomatin, V. S.

T. D. Khokhlova, I. M. Pelivanov, O. A. Sapozhnikov, V. S. Solomatin, and A. A. Karabutov, “Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments,” Quantum Electron. 36, 1097–1102 (2006).
[CrossRef]

Steenbergen, J. W.

S. Manohar, A. Kharine, C. G. van Hespen, J. W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

Stewart, E.

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Stewart, E. A.

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

Stoica, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Sturesson, C.

Su, R.

P. V. Chitnis, H. P. Brecht, R. Su, and A. A. Oraevsky, “Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue,” J. Biomed. Opt. 15, 021313 (2010).
[CrossRef]

Sun, J.

Sun, Y.

Y. Sun, E. S. Sobel, and H. Jiang, “First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints,” Med. Phys. 38, 4009–4017 (2011).
[CrossRef]

Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: an emerging optical modality in diagnostic and theranostic medicine,” Biosens. Bioelectron. 2, 1000108 (2011).
[CrossRef]

Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14, 064002 (2009).
[CrossRef]

Tal, S.

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

Tanter, M.

A. Prost, A. R. Funke, M. Tanter, and E. Bossy, “Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array,” J. Biomed. Opt. 17, 061205 (2012).
[CrossRef]

Tempany, C.

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Ter Haar, G. R.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004).
[CrossRef]

J. E. Kennedy, G. R. ter Haar, and D. Cranston, “High intensity focused ultrasound: surgery of the future?,” Br. J. Radiol. 76, 590–599 (2003).
[CrossRef]

Thüroff, S.

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

Tromberg, B.

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef]

Vaezy, S.

S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am. J. Obstet. Gynecol. 183, 6–11 (2000).
[CrossRef]

Vaithilingam, S.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Vallancien, G.

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

van Hespen, C. G.

S. Manohar, A. Kharine, C. G. van Hespen, J. W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

van Leeuwen, T. G.

S. Manohar, A. Kharine, C. G. van Hespen, J. W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

Walker, C.

S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am. J. Obstet. Gynecol. 183, 6–11 (2000).
[CrossRef]

Walter, B.

A. Blana, B. Walter, S. Rogenhofer, and W. F. Wieland, “High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience,” Urology 63, 297–300 (2004).
[CrossRef]

Wang, L. V.

X. Wang, X. Xie, G. Ku, and L. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Wang, Q.

Wang, X.

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

X. Wang, X. Xie, G. Ku, and L. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Wang, Z. B.

F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003).
[CrossRef]

Wenzel, H. J.

A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002).
[CrossRef]

Wieland, W.

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

Wieland, W. F.

A. Blana, B. Walter, S. Rogenhofer, and W. F. Wieland, “High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience,” Urology 63, 297–300 (2004).
[CrossRef]

Winn, H. R.

A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002).
[CrossRef]

Wu, F.

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004).
[CrossRef]

F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003).
[CrossRef]

Wu, L.

Xi, L.

Xie, H.

Xie, X.

X. Wang, X. Xie, G. Ku, and L. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Xie, Z. H.

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

Xu, Y.

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[CrossRef]

Yang, X.

H. Cui, and X. Yang, “In vivo imaging and treatment of solid tumor using integrated photoacoustic imaging and high intensity focused ultrasound system,” Med. Phys. 37, 4777–4781 (2010).
[CrossRef]

Yin, L.

Yuan, Z.

Zavaleta, C.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Zerda, A. D. L.

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Zhang, E.

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49, 1219–1233 (2010).
[CrossRef]

J. Laufer, E. Zhang, and P. Beard, “Quantitative in vivomeasurements of blood oxygen saturation using multiwavelength photoacoustic imaging,” Proc. SPIE 6437, 64371Z (2007).
[CrossRef]

Zhang, Q.

Zhou, G.

Zhou, Q.

Zhu, H.

F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003).
[CrossRef]

Zijlstra, W.

W. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chemistry 37, 1633–1638 (1991).

Zou, J. Z.

F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003).
[CrossRef]

Acad. Radiol. (2)

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[CrossRef]

A. E. Cerussi, A. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. Holcombe, and B. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef]

AJR Am. J. Roentgenol. (1)

J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynnen, N. Macdanold, Y. Inbar, Y. Itzchak, and J. Rabinovici, “MRI guidance of focused ultrasound therapy of uterine fibroids: early results,” AJR Am. J. Roentgenol. 183, 1713–1719 (2004).

Am. J. Obstet. Gynecol. (1)

S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, “Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound,” Am. J. Obstet. Gynecol. 183, 6–11 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. R. Funke, J.-F. Aubry, M. Fink, A.-C. Boccara, and E. Bossy, “Photoacoustic guidance of high intensity focused ultrasound with selective optical contrasts and time-reversal,” Appl. Phys. Lett. 94, 054102 (2009).
[CrossRef]

Biosens. Bioelectron. (1)

Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: an emerging optical modality in diagnostic and theranostic medicine,” Biosens. Bioelectron. 2, 1000108 (2011).
[CrossRef]

Br. J. Cancer (2)

F. Wu, Z. B. Wang, Y. D. Cao, W. Z. Chen, J. Bai, J. Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br. J. Cancer 89, 2227–2233 (2003).
[CrossRef]

R. O. Illing, J. E. Kennedy, F. Wu, G. R. Ter Haar, A. S. Protheroe, P. J. Friend, F. V. Gleeson, D. W. Cranston, R. R. Phillips, and M. R. Middleton, “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer 93, 890–895 (2005).
[CrossRef]

Br. J. Radiol. (1)

J. E. Kennedy, G. R. ter Haar, and D. Cranston, “High intensity focused ultrasound: surgery of the future?,” Br. J. Radiol. 76, 590–599 (2003).
[CrossRef]

Clin. Chemistry (1)

W. Zijlstra, A. Buursma, and W. P. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chemistry 37, 1633–1638 (1991).

Fertil. Steril. (1)

E. A. Stewart, J. Rabinovici, C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H. S. Kim, and S. Hengst, “Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids,” Fertil. Steril. 85, 22–29 (2006).
[CrossRef]

J. Acoust. Soc. Am. (1)

R. Mass-Moreno, C. A. Damianou, and N. T. Sanghvi, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study,” J. Acoust. Soc. Am. 100, 2522–2530 (1996).
[CrossRef]

J. Biomed. Opt. (5)

P. V. Chitnis, H. P. Brecht, R. Su, and A. A. Oraevsky, “Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue,” J. Biomed. Opt. 15, 021313 (2010).
[CrossRef]

A. Prost, A. R. Funke, M. Tanter, and E. Bossy, “Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array,” J. Biomed. Opt. 17, 061205 (2012).
[CrossRef]

X. Wang, X. Xie, G. Ku, and L. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[CrossRef]

Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14, 064002 (2009).
[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).
[CrossRef]

J. Endourol. (1)

S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H. J. Kiel, A. le Duc, F. Desgrandchamps, J. J. de la Rosette, and A. Gelet, “High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study,” J. Endourol. 17, 673–677 (2003).

J. Phys. D (1)

K. V. Larin, I. V. Larina, and R. O. Esenaliev, “Monitoring of tissue coagulation during thermotherapy using optoacoustic technique,” J. Phys. D 38, 2645–2653 (2005).
[CrossRef]

Lasers Surg. Med. (1)

J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29, 205–212 (2001).
[CrossRef]

Med. Phys. (2)

Y. Sun, E. S. Sobel, and H. Jiang, “First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints,” Med. Phys. 38, 4009–4017 (2011).
[CrossRef]

H. Cui, and X. Yang, “In vivo imaging and treatment of solid tumor using integrated photoacoustic imaging and high intensity focused ultrasound system,” Med. Phys. 37, 4777–4781 (2010).
[CrossRef]

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Nat. Nanotechnol. (1)

A. D. L. Zerda, C. Zavaleta, S. Keren, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557–562 (2008).
[CrossRef]

Nat. Rev. Cancer (1)

J. E. Kennedy, “High-intensity focused ultrasound in the treatment of solid tumours,” Nat. Rev. Cancer 5, 321–327 (2005).
[CrossRef]

Neurosurgery (1)

Z. Ram, Z. R. Cohen, S. Harnof, S. Tal, M. Faibel, D. Nass, S. E. Maier, M. Hadani, and Y. Mardor, “Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy,” Neurosurgery 59, 949–956 (2006).

Opt. Express (3)

Opt. Lett. (2)

Phys. Med. Biol. (2)

S. Manohar, A. Kharine, C. G. van Hespen, J. W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Phys. Med. Biol. 50, 2543–2557 (2005).
[CrossRef]

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Noninvasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921–1931 (2008).
[CrossRef]

Phys. Today (1)

S. Y. Emelianov, P. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(5), 34–39 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

L. S. Boucharda, M. S. Anwarb, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen, “Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles,” Proc. Natl. Acad. Sci. USA 106, 4085–4089 (2009).
[CrossRef]

Proc. SPIE (2)

A. A. Oraevsky, A. A. Karabutov, and S. V. Solomatin, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4526, 6–11 (2001).
[CrossRef]

J. Laufer, E. Zhang, and P. Beard, “Quantitative in vivomeasurements of blood oxygen saturation using multiwavelength photoacoustic imaging,” Proc. SPIE 6437, 64371Z (2007).
[CrossRef]

Quantum Electron. (1)

T. D. Khokhlova, I. M. Pelivanov, O. A. Sapozhnikov, V. S. Solomatin, and A. A. Karabutov, “Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments,” Quantum Electron. 36, 1097–1102 (2006).
[CrossRef]

Radiology (1)

K. Hynynen, O. Pomeroy, and D. N. Smith, “MR-imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study,” Radiology 219, 176–185 (2001).

Ultrasonics (3)

K. Hynynen, “MRI-guided focused ultrasound treatments,” Ultrasonics 50, 221–229 (2010).
[CrossRef]

G. T. Clement, “Perspectives in clinical uses of high-intensity focused ultrasound,” Ultrasonics 42, 1087–1093 (2004).
[CrossRef]

J. E. Kennedy, F. Wu, G. R. ter Haar, F. V. Gleeson, R. R. Phillips, M. R. Middleton, and D. Cranston, “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics 42, 931–935 (2004).
[CrossRef]

Ultrasound Med. Biol. (3)

K. Hynynen, A. H. Chung, V. Colucci, and F. A. Jolesz, “Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo,” Ultrasound Med. Biol. 22, 193–201 (1996).
[CrossRef]

A. H. Mesiwala, L. Farrell, H. J. Wenzel, D. L. Silbergeld, L. A. Crum, H. R. Winn, and P. D. Mourad, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound Med. Biol. 28, 389–400 (2002).
[CrossRef]

A. Anand and P. Kaczkowski, “Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating,” Ultrasound Med. Biol. 34, 1449–1464 (2008).
[CrossRef]

Ultrasound Q. (1)

T. A. Leslie and J. E. Kennedy, “High-intensity focused ultrasound principles, current uses, and potential for the future,” Ultrasound Q. 22, 263–272 (2006).
[CrossRef]

Urology (1)

A. Blana, B. Walter, S. Rogenhofer, and W. F. Wieland, “High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience,” Urology 63, 297–300 (2004).
[CrossRef]

Other (2)

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, 2003), Vol. PM125, Chap. 34, pp. 34/1–34/34.

American National Standard for the Safe Use Lasers in the Health Care Environment (Laser Institute of America, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of tissue ablation using HIFU.

Fig. 2.
Fig. 2.

Schematic of PAI system.

Fig. 3.
Fig. 3.

Photoacoustic images (a)–(e) and photoacoustic spectrum (f) of untreated beef strip (A) and water-bath-treated beef strips (B and C) in five different light wavelengths: (a) 700 nm, (b) 750 nm, (c) 800 nm, (d) 850 nm, and (e) 900 nm.

Fig. 4.
Fig. 4.

Photoacoustic images (a)–(e) and photoacoustic spectrum (f) of HIFU-treated beef sample (A and B are HIFU-induced lesions) in five different light wavelengths: (a) 700 nm, (b) 750 nm, (c) 800 nm, (d) 850 nm, and (e) 900 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[21c22t2]p(r⃗,t)=βCPt[Φ(r⃗)A(t)].

Metrics