Abstract

We demonstrate an electrically tunable binary retarder (ETBR) with a self-aligned liquid crystal (LC) on an anisotropic polymer film produced by photo-assisted imprinting. The ETBR has two parts: a tunable optical layer of an LC and a static optical layer of an imprinted anisotropic polymer film possessing two different in-plane optic axes. The anisotropic polymer film was produced using reactive mesogens spontaneously aligned along the topographic microgrooves by imprinting under the exposure of ultraviolet light. An electrically tunable hybrid wave plate, whose phase retardation varies from a quarter to a half-wave, is constructed using the self-aligned LC layer on the imprinted polymer film that behaves as a quarter wave plate with two alternating optic axes. This approach can be used to design a new class of tunable optical devices with multiple in-plane optic axes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription