Abstract

We demonstrate an electrically tunable binary retarder (ETBR) with a self-aligned liquid crystal (LC) on an anisotropic polymer film produced by photo-assisted imprinting. The ETBR has two parts: a tunable optical layer of an LC and a static optical layer of an imprinted anisotropic polymer film possessing two different in-plane optic axes. The anisotropic polymer film was produced using reactive mesogens spontaneously aligned along the topographic microgrooves by imprinting under the exposure of ultraviolet light. An electrically tunable hybrid wave plate, whose phase retardation varies from a quarter to a half-wave, is constructed using the self-aligned LC layer on the imprinted polymer film that behaves as a quarter wave plate with two alternating optic axes. This approach can be used to design a new class of tunable optical devices with multiple in-plane optic axes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
    [CrossRef]
  2. A. Schwerdtner, R. Haussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
    [CrossRef]
  3. T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12, 1788–1793 (2004).
    [CrossRef]
  4. Y. Yoshihara, H. Ujike, and T. Tanabe, “3D crosstalk of stereoscopic (3D) display using patterned retarder and corresponding glasses,” Proc. IDW 15, 1135–1138 (2008).
  5. H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
    [CrossRef]
  6. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
    [CrossRef]
  7. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
    [CrossRef]
  8. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    [CrossRef]
  9. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997).
    [CrossRef]
  10. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [CrossRef]
  11. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [CrossRef]
  12. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
    [CrossRef]
  13. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach–Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
    [CrossRef]
  14. J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587–589 (2001).
    [CrossRef]
  15. J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20, 864–869 (2012).
    [CrossRef]
  16. J. Kim, J.-H. Na, and S.-D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express 20, 3034–3042 (2012).
    [CrossRef]
  17. Y. Choi, H.-R. Kim, K.-H. Kim, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
    [CrossRef]
  18. H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20, 2045–2052 (2012).
    [CrossRef]
  19. K.-S. Bae, U. Cha, Y.-K. Moon, J. W. Heo, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “Reflective three-dimensional displays using the cholesteric liquid crystal with an inner patterned retarder,” Opt. Express 20, 6927–6931 (2012).
    [CrossRef]
  20. J.-K. Lim and J.-K. Song, “Polymerized micro-patterned optical birefringence film and its fabrication using multi beam mixing,” Opt. Express 19, 26956–26961 (2011).
    [CrossRef]
  21. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31, 2248–2250 (2006).
    [CrossRef]
  22. Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8, 4775–4778 (2008).
    [CrossRef]
  23. X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Soft lithographic methods for nano-fabrication,” J. Mater. Chem. 7, 1069–1074 (1997).
    [CrossRef]
  24. Y. S. Kim, N. Y. Lee, J. R. Lim, M. J. Lee, and S. Park, “Nanofeature-patterned polymer mold fabrication toward precisely defined nanostructure replication,” Chem. Mater. 17, 5867–5870 (2005).
    [CrossRef]
  25. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).
    [CrossRef]
  26. Hind Instruments, PEM-90 Application Note.
  27. B. Jerome, “Surface effects and anchoring in liquid crystals,” Rep. Prog. Phys. 54, 391–451 (1991).
    [CrossRef]
  28. Data sheet of MJ 96758 provided by Merck, Ltd.
  29. S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
    [CrossRef]

2012 (4)

2011 (1)

2010 (1)

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
[CrossRef]

2008 (3)

A. Schwerdtner, R. Haussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
[CrossRef]

Y. Yoshihara, H. Ujike, and T. Tanabe, “3D crosstalk of stereoscopic (3D) display using patterned retarder and corresponding glasses,” Proc. IDW 15, 1135–1138 (2008).

Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8, 4775–4778 (2008).
[CrossRef]

2007 (4)

Y. Choi, H.-R. Kim, K.-H. Kim, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
[CrossRef]

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef]

2006 (1)

2005 (3)

2004 (3)

2001 (1)

1997 (2)

1996 (1)

1991 (1)

B. Jerome, “Surface effects and anchoring in liquid crystals,” Rep. Prog. Phys. 54, 391–451 (1991).
[CrossRef]

1986 (1)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[CrossRef]

1972 (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).
[CrossRef]

Adachi, J.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Ashley, J.

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
[CrossRef]

Bae, K.-S.

Baik, I.-S.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
[CrossRef]

Barnett, S. M.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Benzie, P.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
[CrossRef]

Berreman, D. W.

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).
[CrossRef]

Burr, G. W.

Cha, U.

Chetrit, Y.

Choi, Y.

J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20, 864–869 (2012).
[CrossRef]

Y. Choi, H.-R. Kim, K.-H. Kim, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Chung, I.-J.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
[CrossRef]

Ciftcioglu, B.

Coufal, H.

Courtial, J.

Davis, J. A.

Fernandez-Pousa, C. R.

Franck, T.

Franke-Arnold, S.

Gibson, G.

Glebov, L. B.

Grygier, R. K.

Haussler, R.

A. Schwerdtner, R. Haussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
[CrossRef]

Heo, J. W.

Hodge, D.

Hoffnagle, J. A.

Hopf, K.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
[CrossRef]

Horimai, H.

Ito, T.

Izhaky, N.

Jefferson, C. M.

Jeong, W.-N.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
[CrossRef]

Jerome, B.

B. Jerome, “Surface effects and anchoring in liquid crystals,” Rep. Prog. Phys. 54, 391–451 (1991).
[CrossRef]

Jung, H.-J.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
[CrossRef]

Kang, H.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
[CrossRef]

Keil, U. D.

Kim, H.-R.

Y. Choi, H.-R. Kim, K.-H. Kim, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Kim, J.

Kim, J.-H.

K.-S. Bae, U. Cha, Y.-K. Moon, J. W. Heo, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “Reflective three-dimensional displays using the cholesteric liquid crystal with an inner patterned retarder,” Opt. Express 20, 6927–6931 (2012).
[CrossRef]

Y. Choi, H.-R. Kim, K.-H. Kim, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Kim, K.-H.

Y. Choi, H.-R. Kim, K.-H. Kim, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Kim, S.-U.

Kim, Y. S.

Y. S. Kim, N. Y. Lee, J. R. Lim, M. J. Lee, and S. Park, “Nanofeature-patterned polymer mold fabrication toward precisely defined nanostructure replication,” Chem. Mater. 17, 5867–5870 (2005).
[CrossRef]

Kwak, C.-H.

Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8, 4775–4778 (2008).
[CrossRef]

Lee, M. J.

Y. S. Kim, N. Y. Lee, J. R. Lim, M. J. Lee, and S. Park, “Nanofeature-patterned polymer mold fabrication toward precisely defined nanostructure replication,” Chem. Mater. 17, 5867–5870 (2005).
[CrossRef]

Lee, N. Y.

Y. S. Kim, N. Y. Lee, J. R. Lim, M. J. Lee, and S. Park, “Nanofeature-patterned polymer mold fabrication toward precisely defined nanostructure replication,” Chem. Mater. 17, 5867–5870 (2005).
[CrossRef]

Lee, S.-D.

Lee, Y.-J.

Lee, Y.-M.

Y. Choi, H.-R. Kim, K.-H. Kim, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Leister, N.

A. Schwerdtner, R. Haussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
[CrossRef]

Li, J.

Liao, L.

Lim, J. R.

Y. S. Kim, N. Y. Lee, J. R. Lim, M. J. Lee, and S. Park, “Nanofeature-patterned polymer mold fabrication toward precisely defined nanostructure replication,” Chem. Mater. 17, 5867–5870 (2005).
[CrossRef]

Lim, J.-K.

Lim, Y.-W.

Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8, 4775–4778 (2008).
[CrossRef]

Lin, H.-C.

Lin, Y.-H.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Liu, A.

Marcus, B.

Moon, Y.-K.

Moreno, I.

Morse, M.

Na, J.-H.

Nguyen, H.

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
[CrossRef]

Padgett, M. J.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Paniccia, M.

Park, S.

Y. S. Kim, N. Y. Lee, J. R. Lim, M. J. Lee, and S. Park, “Nanofeature-patterned polymer mold fabrication toward precisely defined nanostructure replication,” Chem. Mater. 17, 5867–5870 (2005).
[CrossRef]

Park, S. C.

Pas’ko, V.

Psaltis, D.

Pu, A.

Rakkolainen, I.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
[CrossRef]

Roh, S.-D.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
[CrossRef]

Rotar, V.

Rubin, D.

Sainov, V.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
[CrossRef]

Samara-Rubio, D.

Sarkissian, H.

Schwerdtner, A.

A. Schwerdtner, R. Haussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
[CrossRef]

Serak, S. V.

Shimobaba, T.

Shin, J.-K.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
[CrossRef]

Song, J.-K.

Surman, P.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
[CrossRef]

Tabiryan, N. V.

Tan, X.

Tanabe, T.

Y. Yoshihara, H. Ujike, and T. Tanabe, “3D crosstalk of stereoscopic (3D) display using patterned retarder and corresponding glasses,” Proc. IDW 15, 1135–1138 (2008).

Ujike, H.

Y. Yoshihara, H. Ujike, and T. Tanabe, “3D crosstalk of stereoscopic (3D) display using patterned retarder and corresponding glasses,” Proc. IDW 15, 1135–1138 (2008).

Urey, H.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
[CrossRef]

Vasnetsov, M.

von Kopylow, C.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
[CrossRef]

Watson, J.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
[CrossRef]

Whitesides, G. M.

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Soft lithographic methods for nano-fabrication,” J. Mater. Chem. 7, 1069–1074 (1997).
[CrossRef]

Wu, S.-T.

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[CrossRef]

Xia, Y.

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Soft lithographic methods for nano-fabrication,” J. Mater. Chem. 7, 1069–1074 (1997).
[CrossRef]

Yoshihara, Y.

Y. Yoshihara, H. Ujike, and T. Tanabe, “3D crosstalk of stereoscopic (3D) display using patterned retarder and corresponding glasses,” Proc. IDW 15, 1135–1138 (2008).

Yu, C.-J.

Zeldovich, B. Y.

Zhao, X.-M.

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Soft lithographic methods for nano-fabrication,” J. Mater. Chem. 7, 1069–1074 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Choi, H.-R. Kim, K.-H. Kim, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Chem. Mater. (1)

Y. S. Kim, N. Y. Lee, J. R. Lim, M. J. Lee, and S. Park, “Nanofeature-patterned polymer mold fabrication toward precisely defined nanostructure replication,” Chem. Mater. 17, 5867–5870 (2005).
[CrossRef]

IEEE Trans. Circuits Syst. Video Technol. (1)

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3D TV display: techniques and technologies,” IEEE Trans. Circuits Syst. Video Technol. 17, 1647–1658 (2007).
[CrossRef]

J. Mater. Chem. (1)

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Soft lithographic methods for nano-fabrication,” J. Mater. Chem. 7, 1069–1074 (1997).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

Y.-W. Lim, C.-H. Kwak, and S.-D. Lee, “Anisotropic nano-imprinting technique for fabricating a patterned optical film of a liquid crystalline polymer,” J. Nanosci. Nanotechnol. 8, 4775–4778 (2008).
[CrossRef]

Nat. Photonics (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2007).
[CrossRef]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Opt. Express (9)

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach–Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[CrossRef]

T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12, 1788–1793 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef]

J.-K. Lim and J.-K. Song, “Polymerized micro-patterned optical birefringence film and its fabrication using multi beam mixing,” Opt. Express 19, 26956–26961 (2011).
[CrossRef]

J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20, 864–869 (2012).
[CrossRef]

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20, 2045–2052 (2012).
[CrossRef]

J. Kim, J.-H. Na, and S.-D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express 20, 3034–3042 (2012).
[CrossRef]

K.-S. Bae, U. Cha, Y.-K. Moon, J. W. Heo, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “Reflective three-dimensional displays using the cholesteric liquid crystal with an inner patterned retarder,” Opt. Express 20, 6927–6931 (2012).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).
[CrossRef]

Proc. IDW (1)

Y. Yoshihara, H. Ujike, and T. Tanabe, “3D crosstalk of stereoscopic (3D) display using patterned retarder and corresponding glasses,” Proc. IDW 15, 1135–1138 (2008).

Proc. SPIE (1)

A. Schwerdtner, R. Haussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
[CrossRef]

Rep. Prog. Phys. (1)

B. Jerome, “Surface effects and anchoring in liquid crystals,” Rep. Prog. Phys. 54, 391–451 (1991).
[CrossRef]

SID Int. Symp. Digest Tech. Papers (1)

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” SID Int. Symp. Digest Tech. Papers 41, 1–4 (2010).
[CrossRef]

Other (2)

Data sheet of MJ 96758 provided by Merck, Ltd.

Hind Instruments, PEM-90 Application Note.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of an ETBR that consists of a TOL and a SOL with two different in-plane optic axes together with the coordinate system. The angles of ϕ1 and ϕ2 denote two different optic axes with respect to the x axis.

Fig. 2.
Fig. 2.

Schematic diagrams showing: (a) the fabrication process of the ILCP with two in-plane optic axes from the RM molecules by photo-assisted imprinting; (b) Schematic diagram of the cross-sectional view of one domain in the ILCP (d1=d2=2μm, h1=850nm, and h2=300nm). The optical microscopic textures of the fabricated ILCPs, observed under crossed polarizers, whose domain widths are (c) 100 μm (25 microgrooves) and (d) 10 μm (2 microgrooves). The inset in (c) shows the FESEM image of the microgrooves on the ILCP across two alternating domains.

Fig. 3.
Fig. 3.

(a) Optical microscopic textures of the ILCP showing two alternating domains, each of 50 μm wide (12 microgrooves), observed under crossed polarizers. (b) The values of the phase retardation of the ILCP measured as a function of the azimuthal angle under crossed polarizers such that the optic axis in one domain makes an angle of 45° with respect to one of the crossed polarizers. The open circles and the open triangles represent the phase retardation of the domain with ϕ1=0° and that with ϕ2=45° in the ILCP film, respectively.

Fig. 4.
Fig. 4.

Schematic diagrams show the LC configurations (a) under no applied voltage and (b) at the applied voltage of 10 V in the TOL. The optical microscopic textures of the ETBR consist of the LC and the ILCP at (c) 0 V and (d) 10 V.

Fig. 5.
Fig. 5.

(a) Optical retardation of the ETBR was measured as a function of the azimuthal angle at 0 and 10 V under crossed polarizers such that the optic axis in one domain makes an angle of 45° with respect to one of the crossed polarizers. The open triangles and the open inverted triangles denote the optical retardation of the domain with ϕ1=0° and that with ϕ2=45° in the ETBR at 0 V, respectively. The open circles and the open diamond symbols denote the optical retardation of the domain with ϕ1=0° and that with ϕ2=45° in the ETBR at 10 V, respectively. (b) The optical retardation of the ETBR, varying continuously from a QWP to a HWP, as a function of the applied voltage.

Metrics