V. Shteeman, D. Boiko, E. Kapon, and A. A. Hardy, “Extension of coupled mode analysis to periodic large arrays of identical waveguides for photonic crystals applications,” IEEE J. Quantum Electron. 43, 215–224 (2007).

[CrossRef]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane-wave basis,” Opt. Express 8, 173–190 (2001).

[CrossRef]

S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162–165 (2001).

[CrossRef]

E. Lidorikis, M. M. Sigalas, and C. M. Soukoulis, “Tight-binding parameterization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).

[CrossRef]

J. B. Pendry, “Calculating photonic band structure,” J. Phys. Condens. Matter 8, 1085–1108 (1996).

[CrossRef]

A. A. Hardy and E. Kapon, “Coupled-mode formulations for parallel-laser resonators with application to vertical-cavity semiconductor-laser arrays,” IEEE J. Quantum Electron. 32, 966–971 (1996).

[CrossRef]

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61, 2546–2549 (1988).

[CrossRef]

A. A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3, 1135–1146 (1985).

[CrossRef]

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61, 2546–2549 (1988).

[CrossRef]

V. Shteeman, D. Boiko, E. Kapon, and A. A. Hardy, “Extension of coupled mode analysis to periodic large arrays of identical waveguides for photonic crystals applications,” IEEE J. Quantum Electron. 43, 215–224 (2007).

[CrossRef]

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61, 2546–2549 (1988).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

V. Shteeman, D. Boiko, E. Kapon, and A. A. Hardy, “Extension of coupled mode analysis to periodic large arrays of identical waveguides for photonic crystals applications,” IEEE J. Quantum Electron. 43, 215–224 (2007).

[CrossRef]

A. A. Hardy and E. Kapon, “Coupled-mode formulations for parallel-laser resonators with application to vertical-cavity semiconductor-laser arrays,” IEEE J. Quantum Electron. 32, 966–971 (1996).

[CrossRef]

A. A. Hardy, W. Streifer, and M. Osinski, “Coupled mode equations for multiwaveguide systems in isotropic or anisotropic media,” Opt. Lett. 11, 742–744 (1986).

[CrossRef]

A. A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3, 1135–1146 (1985).

[CrossRef]

E. Smith, V. Shteeman, E. Kapon, and A. A. Hardy, “Fast approximate derivation of photonic supermodes in one-dimensional photonic crystal devices,” in IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI) (IEEE, 2012).

V. Shteeman, D. Boiko, E. Kapon, and A. A. Hardy, “Extension of coupled mode analysis to periodic large arrays of identical waveguides for photonic crystals applications,” IEEE J. Quantum Electron. 43, 215–224 (2007).

[CrossRef]

A. A. Hardy and E. Kapon, “Coupled-mode formulations for parallel-laser resonators with application to vertical-cavity semiconductor-laser arrays,” IEEE J. Quantum Electron. 32, 966–971 (1996).

[CrossRef]

E. Smith, V. Shteeman, E. Kapon, and A. A. Hardy, “Fast approximate derivation of photonic supermodes in one-dimensional photonic crystal devices,” in IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI) (IEEE, 2012).

C. Kittel, Quantum Theory of Solids (Wiley, 1987).

H. Kogelnik, Theory of dielectric waveguides in integrated optics (Springer-Verlag, 1975).

E. Lidorikis, M. M. Sigalas, and C. M. Soukoulis, “Tight-binding parameterization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).

[CrossRef]

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

J. B. Pendry, “Calculating photonic band structure,” J. Phys. Condens. Matter 8, 1085–1108 (1996).

[CrossRef]

V. Shteeman, D. Boiko, E. Kapon, and A. A. Hardy, “Extension of coupled mode analysis to periodic large arrays of identical waveguides for photonic crystals applications,” IEEE J. Quantum Electron. 43, 215–224 (2007).

[CrossRef]

E. Smith, V. Shteeman, E. Kapon, and A. A. Hardy, “Fast approximate derivation of photonic supermodes in one-dimensional photonic crystal devices,” in IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI) (IEEE, 2012).

E. Lidorikis, M. M. Sigalas, and C. M. Soukoulis, “Tight-binding parameterization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).

[CrossRef]

E. Smith, V. Shteeman, E. Kapon, and A. A. Hardy, “Fast approximate derivation of photonic supermodes in one-dimensional photonic crystal devices,” in IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI) (IEEE, 2012).

E. Lidorikis, M. M. Sigalas, and C. M. Soukoulis, “Tight-binding parameterization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61, 2546–2549 (1988).

[CrossRef]

A. A. Hardy and E. Kapon, “Coupled-mode formulations for parallel-laser resonators with application to vertical-cavity semiconductor-laser arrays,” IEEE J. Quantum Electron. 32, 966–971 (1996).

[CrossRef]

V. Shteeman, D. Boiko, E. Kapon, and A. A. Hardy, “Extension of coupled mode analysis to periodic large arrays of identical waveguides for photonic crystals applications,” IEEE J. Quantum Electron. 43, 215–224 (2007).

[CrossRef]

A. A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3, 1135–1146 (1985).

[CrossRef]

J. B. Pendry, “Calculating photonic band structure,” J. Phys. Condens. Matter 8, 1085–1108 (1996).

[CrossRef]

E. Lidorikis, M. M. Sigalas, and C. M. Soukoulis, “Tight-binding parameterization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998).

[CrossRef]

E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61, 2546–2549 (1988).

[CrossRef]

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

H. Kogelnik, Theory of dielectric waveguides in integrated optics (Springer-Verlag, 1975).

E. Smith, V. Shteeman, E. Kapon, and A. A. Hardy, “Fast approximate derivation of photonic supermodes in one-dimensional photonic crystal devices,” in IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI) (IEEE, 2012).

C. Kittel, Quantum Theory of Solids (Wiley, 1987).

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).