Abstract

An UV cleaning technique has been used for the removal of carbon contamination from grating surface, using oxygen free-radicals generated by the absorption of UV radiation (172 nm) in atmospheric oxygen. The extent of restoration of absolute diffraction efficiency (ADE) and grating blaze angle of a carbon-contaminated variable line–spaced concave grating (average line spacing of 1200lines/mm, blaze angle 3.2 deg, and blaze wavelength 10 nm) has been studied over a 5–70 nm wavelength range. The contamination (due to prolonged use in extreme-ultraviolet spectrograph) resulted in a drastic reduction in the diffraction efficiency of grating, along with a change in the blaze angle. The UV cleaning led to the restoration of blaze angle as well as to an increase in the ADE by more than an order of magnitude for the first two diffraction orders (i.e., from 0.2 to 7.2%) for the first diffraction order and 0.1 to 5% for the second diffraction order at the blaze wavelength. The study is useful for the restoration of carbon-contaminated costly optics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hollensheada and L. Klebanoff, “Modeling radiation-induced carbon contamination of extreme ultra-violet optics,” J. Vac. Sci. Technol. B 24, 64–82 (2006).
    [CrossRef]
  2. “The reflectivity of Au with increase in surface roughness falls in reflectivity ≤10  nm drastically,” http://henke.lbl.gov/optical_constants/layer2.html .
  3. T. Koide, M. Yanagihara, Y. Aiura, S. Sato, T. Shidara, A. Fujimori, H. Fukutani, M. Niwano, and H. Kato, “Resuscitation of carbon-contaminated mirrors and gratings by oxygen-discharge cleaning: efficiency recovery in 4–40 eV range,” Appl. Opt. 26, 3884–3894 (1987).
    [CrossRef]
  4. T. Kita, T. Harada, N. Nakano, and H. Kuroda, “Mechanically ruled aberration corrected concave gratings for a flat field grazing incidence spectrograph,” Appl. Opt. 22, 512–513 (1983).
    [CrossRef]
  5. N. Nakano, H. Kuroda, T. Kita, and T. Harada, “Development of a flat field grazing incidence spectrometer and its application in picosecond XUV spectroscopy,” Appl. Opt. 23, 2386–2392 (1984).
    [CrossRef]
  6. A. Chowdhury, R. A. Joshi, P. A. Naik, and P. D. Gupta, “Optimization of C5+ Balmer line intensity at 182 A from laser-produced carbon plasma,” Pramana J. Phys. 68, 43–49 (2007).
    [CrossRef]
  7. L. Poletto, G. Naletto, and G. Tondello, “Optical design of a spectrometer–monochromator for the extreme-ultraviolet and soft-x-ray emission of high-order harmonics,” Appl. Opt. 42, 6367–6373 (2003).
    [CrossRef]
  8. T. Koide, T. Shidara, K. Tanaka, A. Yagishita, and S. Sato, “In-situ dc oxygen discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2033–2037 (1989).
  9. R. A. Rosenberg and D. B. Crossley, “Oxygen rf-discharge cleaning: plasma characterization and implementation on a grasshopper beam line,” Nucl. Instrum. Methods Phys. Res. A 266, 386–391 (1988).
    [CrossRef]
  10. R. W. C. Hansen, M. Bissen, D. Wallace, J. Wolske, and T. Miller, “Ultraviolet/ozone cleaning of carbon-contaminated optics,” Appl. Opt. 32, 4114–4116 (1993).
    [CrossRef]
  11. J. M. Lee and K. G. Watkins, “Removal of small particles on silicon wafer by laser-induced airborne plasma shock waves,” J. Appl. Phys. 89, 6496–6500 (2001).
    [CrossRef]
  12. A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
    [CrossRef]
  13. R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).
  14. E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft X-ray regions,” J. Electr. Spectrosc. Relat. Phenom. 80, 313–316 (1996).
    [CrossRef]
  15. M. H. Modi, R. K. Gupta, A. Singh, and G. S. Lodha, “Quantitative determination of higher harmonic content in the soft x-ray spectra of toroidal grating monochromator using a reflection multilayer,” Appl. Opt. 51, 3552–3557 (2012).
    [CrossRef]
  16. M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
    [CrossRef]
  17. K. Tanaka, K. Hamamoto, N. Sakaya, M. Hosoya, T. Watanebe, and H. Kinoshita, “Cleaning characteristics of contaminated imaging optics using 172 nm radiation,” Jpn. J. Appl. Phys. 46, 6150–6154 (2007).
    [CrossRef]
  18. T. Koide, T. Shidara, M. Yanagihara, and S. Sato, “Resuscitation of carbon-contaminated mirrors and gratings by oxygen-discharge cleaning: efficiency recovery in 100–1000 eV range,” Appl. Opt. 27, 4305–4313 (1988).
    [CrossRef]

2012 (3)

M. H. Modi, R. K. Gupta, A. Singh, and G. S. Lodha, “Quantitative determination of higher harmonic content in the soft x-ray spectra of toroidal grating monochromator using a reflection multilayer,” Appl. Opt. 51, 3552–3557 (2012).
[CrossRef]

M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
[CrossRef]

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

2007 (2)

K. Tanaka, K. Hamamoto, N. Sakaya, M. Hosoya, T. Watanebe, and H. Kinoshita, “Cleaning characteristics of contaminated imaging optics using 172 nm radiation,” Jpn. J. Appl. Phys. 46, 6150–6154 (2007).
[CrossRef]

A. Chowdhury, R. A. Joshi, P. A. Naik, and P. D. Gupta, “Optimization of C5+ Balmer line intensity at 182 A from laser-produced carbon plasma,” Pramana J. Phys. 68, 43–49 (2007).
[CrossRef]

2006 (1)

J. Hollensheada and L. Klebanoff, “Modeling radiation-induced carbon contamination of extreme ultra-violet optics,” J. Vac. Sci. Technol. B 24, 64–82 (2006).
[CrossRef]

2003 (1)

2002 (1)

R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).

2001 (1)

J. M. Lee and K. G. Watkins, “Removal of small particles on silicon wafer by laser-induced airborne plasma shock waves,” J. Appl. Phys. 89, 6496–6500 (2001).
[CrossRef]

1996 (1)

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft X-ray regions,” J. Electr. Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

1993 (1)

1989 (1)

T. Koide, T. Shidara, K. Tanaka, A. Yagishita, and S. Sato, “In-situ dc oxygen discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2033–2037 (1989).

1988 (2)

R. A. Rosenberg and D. B. Crossley, “Oxygen rf-discharge cleaning: plasma characterization and implementation on a grasshopper beam line,” Nucl. Instrum. Methods Phys. Res. A 266, 386–391 (1988).
[CrossRef]

T. Koide, T. Shidara, M. Yanagihara, and S. Sato, “Resuscitation of carbon-contaminated mirrors and gratings by oxygen-discharge cleaning: efficiency recovery in 100–1000 eV range,” Appl. Opt. 27, 4305–4313 (1988).
[CrossRef]

1987 (1)

1984 (1)

1983 (1)

Adachi, J.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Aiura, Y.

Amemiya, K.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Bissen, M.

Canfield, L. R.

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft X-ray regions,” J. Electr. Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

Chakera, J. A.

M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
[CrossRef]

Chowdhury, A.

A. Chowdhury, R. A. Joshi, P. A. Naik, and P. D. Gupta, “Optimization of C5+ Balmer line intensity at 182 A from laser-produced carbon plasma,” Pramana J. Phys. 68, 43–49 (2007).
[CrossRef]

Crossley, D. B.

R. A. Rosenberg and D. B. Crossley, “Oxygen rf-discharge cleaning: plasma characterization and implementation on a grasshopper beam line,” Nucl. Instrum. Methods Phys. Res. A 266, 386–391 (1988).
[CrossRef]

Fujimori, A.

Fukutani, H.

Gullikson, E. M.

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft X-ray regions,” J. Electr. Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

Gupta, P. D.

M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
[CrossRef]

A. Chowdhury, R. A. Joshi, P. A. Naik, and P. D. Gupta, “Optimization of C5+ Balmer line intensity at 182 A from laser-produced carbon plasma,” Pramana J. Phys. 68, 43–49 (2007).
[CrossRef]

Gupta, R. K.

M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
[CrossRef]

M. H. Modi, R. K. Gupta, A. Singh, and G. S. Lodha, “Quantitative determination of higher harmonic content in the soft x-ray spectra of toroidal grating monochromator using a reflection multilayer,” Appl. Opt. 51, 3552–3557 (2012).
[CrossRef]

Hamamoto, K.

K. Tanaka, K. Hamamoto, N. Sakaya, M. Hosoya, T. Watanebe, and H. Kinoshita, “Cleaning characteristics of contaminated imaging optics using 172 nm radiation,” Jpn. J. Appl. Phys. 46, 6150–6154 (2007).
[CrossRef]

Hansen, R. W. C.

Harada, T.

Hollensheada, J.

J. Hollensheada and L. Klebanoff, “Modeling radiation-induced carbon contamination of extreme ultra-violet optics,” J. Vac. Sci. Technol. B 24, 64–82 (2006).
[CrossRef]

Hosoya, M.

K. Tanaka, K. Hamamoto, N. Sakaya, M. Hosoya, T. Watanebe, and H. Kinoshita, “Cleaning characteristics of contaminated imaging optics using 172 nm radiation,” Jpn. J. Appl. Phys. 46, 6150–6154 (2007).
[CrossRef]

Joshi, R. A.

A. Chowdhury, R. A. Joshi, P. A. Naik, and P. D. Gupta, “Optimization of C5+ Balmer line intensity at 182 A from laser-produced carbon plasma,” Pramana J. Phys. 68, 43–49 (2007).
[CrossRef]

Kato, H.

Kikuchi, T.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Kinoshita, H.

K. Tanaka, K. Hamamoto, N. Sakaya, M. Hosoya, T. Watanebe, and H. Kinoshita, “Cleaning characteristics of contaminated imaging optics using 172 nm radiation,” Jpn. J. Appl. Phys. 46, 6150–6154 (2007).
[CrossRef]

Kita, T.

Klebanoff, L.

J. Hollensheada and L. Klebanoff, “Modeling radiation-induced carbon contamination of extreme ultra-violet optics,” J. Vac. Sci. Technol. B 24, 64–82 (2006).
[CrossRef]

Koide, T.

Korde, R.

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft X-ray regions,” J. Electr. Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

Kumar, M.

M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
[CrossRef]

Kuroda, H.

Lee, J. M.

J. M. Lee and K. G. Watkins, “Removal of small particles on silicon wafer by laser-induced airborne plasma shock waves,” J. Appl. Phys. 89, 6496–6500 (2001).
[CrossRef]

Lodha, G. S.

M. H. Modi, R. K. Gupta, A. Singh, and G. S. Lodha, “Quantitative determination of higher harmonic content in the soft x-ray spectra of toroidal grating monochromator using a reflection multilayer,” Appl. Opt. 51, 3552–3557 (2012).
[CrossRef]

M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
[CrossRef]

R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).

Mase, K.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Miller, T.

Modi, M. H.

M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
[CrossRef]

M. H. Modi, R. K. Gupta, A. Singh, and G. S. Lodha, “Quantitative determination of higher harmonic content in the soft x-ray spectra of toroidal grating monochromator using a reflection multilayer,” Appl. Opt. 51, 3552–3557 (2012).
[CrossRef]

R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).

Naik, P. A.

M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
[CrossRef]

A. Chowdhury, R. A. Joshi, P. A. Naik, and P. D. Gupta, “Optimization of C5+ Balmer line intensity at 182 A from laser-produced carbon plasma,” Pramana J. Phys. 68, 43–49 (2007).
[CrossRef]

Nakano, N.

Naletto, G.

Nandedkar, R. V.

R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).

Nayak, M.

R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).

Niwano, M.

Poletto, L.

Raghuvanshi, V. K.

R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).

Rosenberg, R. A.

R. A. Rosenberg and D. B. Crossley, “Oxygen rf-discharge cleaning: plasma characterization and implementation on a grasshopper beam line,” Nucl. Instrum. Methods Phys. Res. A 266, 386–391 (1988).
[CrossRef]

Sakaya, N.

K. Tanaka, K. Hamamoto, N. Sakaya, M. Hosoya, T. Watanebe, and H. Kinoshita, “Cleaning characteristics of contaminated imaging optics using 172 nm radiation,” Jpn. J. Appl. Phys. 46, 6150–6154 (2007).
[CrossRef]

Sato, S.

Sawhney, K. J. S.

R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).

Shidara, T.

Singh, A.

Singhal, H.

M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
[CrossRef]

Sinha, A. K.

R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).

Tanaka, H.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Tanaka, K.

K. Tanaka, K. Hamamoto, N. Sakaya, M. Hosoya, T. Watanebe, and H. Kinoshita, “Cleaning characteristics of contaminated imaging optics using 172 nm radiation,” Jpn. J. Appl. Phys. 46, 6150–6154 (2007).
[CrossRef]

T. Koide, T. Shidara, K. Tanaka, A. Yagishita, and S. Sato, “In-situ dc oxygen discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2033–2037 (1989).

Tondello, G.

Toyoshima, A.

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

Verma, A.

R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).

Vest, R. E.

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft X-ray regions,” J. Electr. Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

Wallace, D.

Watanebe, T.

K. Tanaka, K. Hamamoto, N. Sakaya, M. Hosoya, T. Watanebe, and H. Kinoshita, “Cleaning characteristics of contaminated imaging optics using 172 nm radiation,” Jpn. J. Appl. Phys. 46, 6150–6154 (2007).
[CrossRef]

Watkins, K. G.

J. M. Lee and K. G. Watkins, “Removal of small particles on silicon wafer by laser-induced airborne plasma shock waves,” J. Appl. Phys. 89, 6496–6500 (2001).
[CrossRef]

Wolske, J.

Yagishita, A.

T. Koide, T. Shidara, K. Tanaka, A. Yagishita, and S. Sato, “In-situ dc oxygen discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2033–2037 (1989).

Yanagihara, M.

AIP Conf. Proc. (1)

M. Kumar, M. H. Modi, H. Singhal, J. A. Chakera, R. K. Gupta, P. A. Naik, G. S. Lodha, and P. D. Gupta, “Measurement of absolute diffraction efficiency of a variable line spaced grating using reflectivity beamline,” AIP Conf. Proc. 1447, 687–688 (2012).
[CrossRef]

Appl. Opt. (7)

M. H. Modi, R. K. Gupta, A. Singh, and G. S. Lodha, “Quantitative determination of higher harmonic content in the soft x-ray spectra of toroidal grating monochromator using a reflection multilayer,” Appl. Opt. 51, 3552–3557 (2012).
[CrossRef]

R. W. C. Hansen, M. Bissen, D. Wallace, J. Wolske, and T. Miller, “Ultraviolet/ozone cleaning of carbon-contaminated optics,” Appl. Opt. 32, 4114–4116 (1993).
[CrossRef]

T. Koide, M. Yanagihara, Y. Aiura, S. Sato, T. Shidara, A. Fujimori, H. Fukutani, M. Niwano, and H. Kato, “Resuscitation of carbon-contaminated mirrors and gratings by oxygen-discharge cleaning: efficiency recovery in 4–40 eV range,” Appl. Opt. 26, 3884–3894 (1987).
[CrossRef]

T. Kita, T. Harada, N. Nakano, and H. Kuroda, “Mechanically ruled aberration corrected concave gratings for a flat field grazing incidence spectrograph,” Appl. Opt. 22, 512–513 (1983).
[CrossRef]

N. Nakano, H. Kuroda, T. Kita, and T. Harada, “Development of a flat field grazing incidence spectrometer and its application in picosecond XUV spectroscopy,” Appl. Opt. 23, 2386–2392 (1984).
[CrossRef]

L. Poletto, G. Naletto, and G. Tondello, “Optical design of a spectrometer–monochromator for the extreme-ultraviolet and soft-x-ray emission of high-order harmonics,” Appl. Opt. 42, 6367–6373 (2003).
[CrossRef]

T. Koide, T. Shidara, M. Yanagihara, and S. Sato, “Resuscitation of carbon-contaminated mirrors and gratings by oxygen-discharge cleaning: efficiency recovery in 100–1000 eV range,” Appl. Opt. 27, 4305–4313 (1988).
[CrossRef]

Current Science (1)

R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha, A. Verma, V. K. Raghuvanshi, A. K. Sinha, M. H. Modi, and M. Nayak, “First results on the reflectometry beamline on Indus-1,” Current Science 82, 298–304 (2002).

J. Appl. Phys. (1)

J. M. Lee and K. G. Watkins, “Removal of small particles on silicon wafer by laser-induced airborne plasma shock waves,” J. Appl. Phys. 89, 6496–6500 (2001).
[CrossRef]

J. Electr. Spectrosc. Relat. Phenom. (1)

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft X-ray regions,” J. Electr. Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

J. Synchrotron Radiat. (1)

A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase, and K. Amemiya, “In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation,” J. Synchrotron Radiat. 19, 722–727 (2012).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. Hollensheada and L. Klebanoff, “Modeling radiation-induced carbon contamination of extreme ultra-violet optics,” J. Vac. Sci. Technol. B 24, 64–82 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Tanaka, K. Hamamoto, N. Sakaya, M. Hosoya, T. Watanebe, and H. Kinoshita, “Cleaning characteristics of contaminated imaging optics using 172 nm radiation,” Jpn. J. Appl. Phys. 46, 6150–6154 (2007).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

R. A. Rosenberg and D. B. Crossley, “Oxygen rf-discharge cleaning: plasma characterization and implementation on a grasshopper beam line,” Nucl. Instrum. Methods Phys. Res. A 266, 386–391 (1988).
[CrossRef]

Pramana J. Phys. (1)

A. Chowdhury, R. A. Joshi, P. A. Naik, and P. D. Gupta, “Optimization of C5+ Balmer line intensity at 182 A from laser-produced carbon plasma,” Pramana J. Phys. 68, 43–49 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Koide, T. Shidara, K. Tanaka, A. Yagishita, and S. Sato, “In-situ dc oxygen discharge cleaning system for optical elements,” Rev. Sci. Instrum. 60, 2033–2037 (1989).

Other (1)

“The reflectivity of Au with increase in surface roughness falls in reflectivity ≤10  nm drastically,” http://henke.lbl.gov/optical_constants/layer2.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental layout for UV cleaning of the VLS grating.

Fig. 2.
Fig. 2.

Spectral variation of the ADE of the VLS grating before cleaning, for the first and second diffraction orders.

Fig. 3.
Fig. 3.

(a) Variation of the ADE of the VLS grating at 10 nm with cleaning time. (b) Variation of the ADE at 5 nm with cleaning time.

Fig. 4.
Fig. 4.

Zero-order reflection before (black, lower peak) and after cleaning of 6 h (red, higher peak) (a) at wavelength 5 nm (wavelength lower than blaze wavelength), (b) at the blaze wavelength of 10 nm, (c) at wavelength 20 nm (higher but close to blaze wavelength), and (d) at 70 nm (wavelength far from the blaze wavelength). The reflectivity increases for all wavelengths after cleaning.

Fig. 5.
Fig. 5.

Diffraction spectra of VLS grating both before and after cleaning: (a) measured at 5 nm and (b) at 10 nm wavelength.

Fig. 6.
Fig. 6.

ADE for the first three diffraction orders, measured in the spectral range from 5 to 70 nm. The dashed curves are before cleaning and the solid curves are after cleaning.

Metrics