Abstract

Eu3+- and Dy3+-doped GdVO4 samples synthesized by a high-temperature solid-state method are investigated by fluorescence spectroscopy at 298–750 K. They demonstrate potential for development as thermographic phosphors because the experimental and theoretical temperature dependence of the intensity ratio of the two lines agrees well. Experimental lifetime measurements recorded at 10–750 K were fitted using three theoretical models: multiphonon relaxation, temperature quenching through the charge transfer (CT) region, and our modified CT model (TDCT), which considers the temperature dependence of CT energy. The TDCT model yields the best results with good agreement between experimental and fitted lifetime data.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd ed. (CRC, 2007).
  2. K. T. V. Grattan and Z. P. Zhang, “Fiber optic luminescence thermometry,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds. (Kluwer, 1998), pp. 133–204.
  3. S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
    [CrossRef]
  4. A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008).
    [CrossRef]
  5. M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res. 39, 325–359 (2009).
    [CrossRef]
  6. M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energy Combust. Sci. 37, 422–461 (2011).
    [CrossRef]
  7. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
    [CrossRef]
  8. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
    [CrossRef]
  9. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998).
    [CrossRef]
  10. N. Fuhrmann, E. Baum, J. Brübach, and A. Dreizler, “High-speed phosphor thermometry,” Rev. Sci. Instrum. 82, 104903 (2011).
    [CrossRef]
  11. E. B. Noel, W. D. Turley, and S. W. Allison, “Thermographic phosphor temperature measurements: commercial and defense-related applications,” in Proceedings of the 40th International Instrumentation Symposium (Instrument Society of America, 1994), pp. 271–288.
  12. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
    [CrossRef]
  13. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011).
    [CrossRef]
  14. W. Ryba-Romanowski, R. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
    [CrossRef]
  15. S. Ray, A. Banerjee, and P. Pramanik, “A novel rock-like nanoarchitecture of YVO4:Eu3+ phosphor: selective synthesis, characterization, and luminescence behavior,” J. Mater. Sci. 45, 259–267 (2010).
    [CrossRef]
  16. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002).
    [CrossRef]
  17. X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4crystal,” J. Cryst. Growth 200, 199–203 (1999).
    [CrossRef]
  18. C. Görlier-Walrand and K. Binnemans, “Spectral intensities of f-f transitions,” in Handbook on the Physics and Chemistry of Rare Earths, , K. A. Gschneidner and J. L. Eyring, eds. (North-Holland, 1998), Vol. 25, Chap. 167, pp. 101–264.
  19. A. I. Zaguniennyi, V. G. Ostoumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
    [CrossRef]
  20. P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994).
    [CrossRef]
  21. F. Wang, X. J. Xue, and X. G. Liu, “Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation,” Angew. Chem. Int. Ed. 47, 906–909 (2008).
    [CrossRef]
  22. J. H. Wu and B. Yan, “Photoluminescence intensity of YxGd1−xVO4:Eu3+ dependence on hydrothermal synthesis time and variable ratio of Y/Gd,” J. Alloys Compd. 455, 485–488 (2008).
    [CrossRef]
  23. W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC, 2004).
  24. V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: an example of Pr3+,” Appl. Phys. B 87, 323–325 (2007).
    [CrossRef]
  25. V. K. Rai and C. B. de Araujo, “Limit of accuracy for fluorescence lifetime temperature sensing,” Spectrochim. Acta A 71, 116–118 (2008).
    [CrossRef]
  26. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88, 297–303 (2007).
    [CrossRef]
  27. B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
    [CrossRef]
  28. T. Yamase, T. Kobayashi, M. Sugeta, and H. Naruke, “Europium(III) luminescence and intramolecular energy transfer studies of polyoxometalloeuropates,” J. Phys. Chem. A 101, 5046–5053 (1997).
    [CrossRef]
  29. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010).
    [CrossRef]
  30. P. H. Gonzalez, S. F. L. Luis, S. G. Perez, and I. R. Martýn, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46, 1051–1054 (2011).
    [CrossRef]
  31. Y. Shen, X. Wang, H. He, Y. Lin, and C. W. Nan, “Temperature sensing with fluorescence intensity ratio technique in epoxy-based nanocomposite filled with Er3+-doped 7YSZ,” Compos. Sci. Technol. 72, 1008–1011 (2012).
    [CrossRef]
  32. S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149, 16–20 (2009).
    [CrossRef]
  33. B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123, 667–670 (2007).
    [CrossRef]
  34. C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ codoped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).
    [CrossRef]
  35. Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd. 439, 367–375 (2007).
    [CrossRef]
  36. S. R. Anishia, M. T. Jose, O. Annalakshmi, and V. Ramasamy, “Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors,” J. Lumin. 131, 2492–2498 (2011).
    [CrossRef]
  37. V. K. Rai and C. B. Araujo, “Fluorescence intensity ratio technique for Sm3+ doped calibo glass,” Spectrochim. Acta A 69, 509–512 (2008).
    [CrossRef]
  38. L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
    [CrossRef]
  39. G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19, 125304 (2008).
    [CrossRef]
  40. B. Di Bartolo and J. Collins, “Luminescence spectroscopy,” in Handbook of Applied Solid State Spectroscopy, D. R. Vij, ed. (Springer, 2006).
  41. L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
    [CrossRef]
  42. A. L. Heyes, “On the design of phosphors for high-temperature thermometry,” J. Lumin. 129, 2004–2009 (2009).
    [CrossRef]
  43. M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129, 263–269 (2009).
    [CrossRef]
  44. M. Anitha, P. Ramakrishnan, A. Chatterjee, G. Alexander, and H. Singh, “Spectral properties and emission efficiencies of GdVO4 phosphors,” Appl. Phys. A 74, 153–162(2002).
    [CrossRef]
  45. A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A=La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21, 115503 (2009).
    [CrossRef]
  46. Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
    [CrossRef]

2012 (4)

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[CrossRef]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
[CrossRef]

Y. Shen, X. Wang, H. He, Y. Lin, and C. W. Nan, “Temperature sensing with fluorescence intensity ratio technique in epoxy-based nanocomposite filled with Er3+-doped 7YSZ,” Compos. Sci. Technol. 72, 1008–1011 (2012).
[CrossRef]

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

2011 (6)

S. R. Anishia, M. T. Jose, O. Annalakshmi, and V. Ramasamy, “Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors,” J. Lumin. 131, 2492–2498 (2011).
[CrossRef]

P. H. Gonzalez, S. F. L. Luis, S. G. Perez, and I. R. Martýn, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46, 1051–1054 (2011).
[CrossRef]

N. Fuhrmann, E. Baum, J. Brübach, and A. Dreizler, “High-speed phosphor thermometry,” Rev. Sci. Instrum. 82, 104903 (2011).
[CrossRef]

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energy Combust. Sci. 37, 422–461 (2011).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011).
[CrossRef]

W. Ryba-Romanowski, R. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

2010 (2)

S. Ray, A. Banerjee, and P. Pramanik, “A novel rock-like nanoarchitecture of YVO4:Eu3+ phosphor: selective synthesis, characterization, and luminescence behavior,” J. Mater. Sci. 45, 259–267 (2010).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010).
[CrossRef]

2009 (5)

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149, 16–20 (2009).
[CrossRef]

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A=La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21, 115503 (2009).
[CrossRef]

A. L. Heyes, “On the design of phosphors for high-temperature thermometry,” J. Lumin. 129, 2004–2009 (2009).
[CrossRef]

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129, 263–269 (2009).
[CrossRef]

M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res. 39, 325–359 (2009).
[CrossRef]

2008 (6)

A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008).
[CrossRef]

V. K. Rai and C. B. de Araujo, “Limit of accuracy for fluorescence lifetime temperature sensing,” Spectrochim. Acta A 71, 116–118 (2008).
[CrossRef]

V. K. Rai and C. B. Araujo, “Fluorescence intensity ratio technique for Sm3+ doped calibo glass,” Spectrochim. Acta A 69, 509–512 (2008).
[CrossRef]

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19, 125304 (2008).
[CrossRef]

F. Wang, X. J. Xue, and X. G. Liu, “Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation,” Angew. Chem. Int. Ed. 47, 906–909 (2008).
[CrossRef]

J. H. Wu and B. Yan, “Photoluminescence intensity of YxGd1−xVO4:Eu3+ dependence on hydrothermal synthesis time and variable ratio of Y/Gd,” J. Alloys Compd. 455, 485–488 (2008).
[CrossRef]

2007 (6)

V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: an example of Pr3+,” Appl. Phys. B 87, 323–325 (2007).
[CrossRef]

B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123, 667–670 (2007).
[CrossRef]

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ codoped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).
[CrossRef]

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd. 439, 367–375 (2007).
[CrossRef]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88, 297–303 (2007).
[CrossRef]

B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
[CrossRef]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

2002 (2)

M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002).
[CrossRef]

M. Anitha, P. Ramakrishnan, A. Chatterjee, G. Alexander, and H. Singh, “Spectral properties and emission efficiencies of GdVO4 phosphors,” Appl. Phys. A 74, 153–162(2002).
[CrossRef]

1999 (1)

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4crystal,” J. Cryst. Growth 200, 199–203 (1999).
[CrossRef]

1998 (1)

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998).
[CrossRef]

1997 (2)

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

T. Yamase, T. Kobayashi, M. Sugeta, and H. Naruke, “Europium(III) luminescence and intramolecular energy transfer studies of polyoxometalloeuropates,” J. Phys. Chem. A 101, 5046–5053 (1997).
[CrossRef]

1994 (1)

P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994).
[CrossRef]

1992 (1)

A. I. Zaguniennyi, V. G. Ostoumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

1989 (1)

L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

1968 (1)

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
[CrossRef]

Aldén, M.

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energy Combust. Sci. 37, 422–461 (2011).
[CrossRef]

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19, 125304 (2008).
[CrossRef]

Alexander, G.

M. Anitha, P. Ramakrishnan, A. Chatterjee, G. Alexander, and H. Singh, “Spectral properties and emission efficiencies of GdVO4 phosphors,” Appl. Phys. A 74, 153–162(2002).
[CrossRef]

Allison, S. W.

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

E. B. Noel, W. D. Turley, and S. W. Allison, “Thermographic phosphor temperature measurements: commercial and defense-related applications,” in Proceedings of the 40th International Instrumentation Symposium (Instrument Society of America, 1994), pp. 271–288.

Amaral, V. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010).
[CrossRef]

Anishia, S. R.

S. R. Anishia, M. T. Jose, O. Annalakshmi, and V. Ramasamy, “Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors,” J. Lumin. 131, 2492–2498 (2011).
[CrossRef]

Anitha, M.

M. Anitha, P. Ramakrishnan, A. Chatterjee, G. Alexander, and H. Singh, “Spectral properties and emission efficiencies of GdVO4 phosphors,” Appl. Phys. A 74, 153–162(2002).
[CrossRef]

Annalakshmi, O.

S. R. Anishia, M. T. Jose, O. Annalakshmi, and V. Ramasamy, “Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors,” J. Lumin. 131, 2492–2498 (2011).
[CrossRef]

Araujo, C. B.

V. K. Rai and C. B. Araujo, “Fluorescence intensity ratio technique for Sm3+ doped calibo glass,” Spectrochim. Acta A 69, 509–512 (2008).
[CrossRef]

Banerjee, A.

S. Ray, A. Banerjee, and P. Pramanik, “A novel rock-like nanoarchitecture of YVO4:Eu3+ phosphor: selective synthesis, characterization, and luminescence behavior,” J. Mater. Sci. 45, 259–267 (2010).
[CrossRef]

Baum, E.

N. Fuhrmann, E. Baum, J. Brübach, and A. Dreizler, “High-speed phosphor thermometry,” Rev. Sci. Instrum. 82, 104903 (2011).
[CrossRef]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998).
[CrossRef]

Bettinelli, M.

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A=La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21, 115503 (2009).
[CrossRef]

Binnemans, K.

C. Görlier-Walrand and K. Binnemans, “Spectral intensities of f-f transitions,” in Handbook on the Physics and Chemistry of Rare Earths, , K. A. Gschneidner and J. L. Eyring, eds. (North-Holland, 1998), Vol. 25, Chap. 167, pp. 101–264.

Boutinaud, P.

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A=La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21, 115503 (2009).
[CrossRef]

Brites, C. D. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010).
[CrossRef]

Brübach, J.

N. Fuhrmann, E. Baum, J. Brübach, and A. Dreizler, “High-speed phosphor thermometry,” Rev. Sci. Instrum. 82, 104903 (2011).
[CrossRef]

Carlos, L. D.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010).
[CrossRef]

Cavalli, E.

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A=La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21, 115503 (2009).
[CrossRef]

Chambers, M. D.

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129, 263–269 (2009).
[CrossRef]

M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res. 39, 325–359 (2009).
[CrossRef]

Chang, Y. H.

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd. 439, 367–375 (2007).
[CrossRef]

Chang, Y. S.

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd. 439, 367–375 (2007).
[CrossRef]

Chatterjee, A.

M. Anitha, P. Ramakrishnan, A. Chatterjee, G. Alexander, and H. Singh, “Spectral properties and emission efficiencies of GdVO4 phosphors,” Appl. Phys. A 74, 153–162(2002).
[CrossRef]

Chow, Y.

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4crystal,” J. Cryst. Growth 200, 199–203 (1999).
[CrossRef]

Clarke, D. R.

M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res. 39, 325–359 (2009).
[CrossRef]

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129, 263–269 (2009).
[CrossRef]

Collins, J.

B. Di Bartolo and J. Collins, “Luminescence spectroscopy,” in Handbook of Applied Solid State Spectroscopy, D. R. Vij, ed. (Springer, 2006).

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998).
[CrossRef]

de Araujo, C. B.

V. K. Rai and C. B. de Araujo, “Limit of accuracy for fluorescence lifetime temperature sensing,” Spectrochim. Acta A 71, 116–118 (2008).
[CrossRef]

Di Bartolo, B.

B. Di Bartolo and J. Collins, “Luminescence spectroscopy,” in Handbook of Applied Solid State Spectroscopy, D. R. Vij, ed. (Springer, 2006).

Ding, F.

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

Dong, B.

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ codoped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).
[CrossRef]

B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123, 667–670 (2007).
[CrossRef]

Dorenbos, P.

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A=La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21, 115503 (2009).
[CrossRef]

Dreizler, A.

N. Fuhrmann, E. Baum, J. Brübach, and A. Dreizler, “High-speed phosphor thermometry,” Rev. Sci. Instrum. 82, 104903 (2011).
[CrossRef]

Feng, B.

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

Fu, J.

M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002).
[CrossRef]

Fuhrmann, N.

N. Fuhrmann, E. Baum, J. Brübach, and A. Dreizler, “High-speed phosphor thermometry,” Rev. Sci. Instrum. 82, 104903 (2011).
[CrossRef]

Gao, X.

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

Gao, Y.

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

Gillies, G. T.

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

Gonzalez, P. H.

P. H. Gonzalez, S. F. L. Luis, S. G. Perez, and I. R. Martýn, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46, 1051–1054 (2011).
[CrossRef]

Görlier-Walrand, C.

C. Görlier-Walrand and K. Binnemans, “Spectral intensities of f-f transitions,” in Handbook on the Physics and Chemistry of Rare Earths, , K. A. Gschneidner and J. L. Eyring, eds. (North-Holland, 1998), Vol. 25, Chap. 167, pp. 101–264.

Goss, L. P.

L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

Grattan, K. T. V.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998).
[CrossRef]

K. T. V. Grattan and Z. P. Zhang, “Fiber optic luminescence thermometry,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds. (Kluwer, 1998), pp. 133–204.

Gu, M.

B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
[CrossRef]

Han, K.

B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
[CrossRef]

Han, Y.

M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002).
[CrossRef]

He, H.

Y. Shen, X. Wang, H. He, Y. Lin, and C. W. Nan, “Temperature sensing with fluorescence intensity ratio technique in epoxy-based nanocomposite filled with Er3+-doped 7YSZ,” Compos. Sci. Technol. 72, 1008–1011 (2012).
[CrossRef]

Heyes, A. L.

A. L. Heyes, “On the design of phosphors for high-temperature thermometry,” J. Lumin. 129, 2004–2009 (2009).
[CrossRef]

Huang, S.

B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
[CrossRef]

Huber, G.

A. I. Zaguniennyi, V. G. Ostoumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
[CrossRef]

Jelinková, H.

W. Ryba-Romanowski, R. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

Jensen, T.

A. I. Zaguniennyi, V. G. Ostoumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Jose, M. T.

S. R. Anishia, M. T. Jose, O. Annalakshmi, and V. Ramasamy, “Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors,” J. Lumin. 131, 2492–2498 (2011).
[CrossRef]

Khalid, A.

A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008).
[CrossRef]

Kobayashi, T.

T. Yamase, T. Kobayashi, M. Sugeta, and H. Naruke, “Europium(III) luminescence and intramolecular energy transfer studies of polyoxometalloeuropates,” J. Phys. Chem. A 101, 5046–5053 (1997).
[CrossRef]

Kontis, K.

A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008).
[CrossRef]

Krumpel, A. H.

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A=La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21, 115503 (2009).
[CrossRef]

Kumar, K.

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149, 16–20 (2009).
[CrossRef]

Lei, M. K.

B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123, 667–670 (2007).
[CrossRef]

Li, C.

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ codoped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).
[CrossRef]

Li, K.

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

Li, S.

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ codoped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).
[CrossRef]

Li, Y. C.

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd. 439, 367–375 (2007).
[CrossRef]

Lima, P. P.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010).
[CrossRef]

Lin, J.

M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002).
[CrossRef]

Lin, Y.

Y. Shen, X. Wang, H. He, Y. Lin, and C. W. Nan, “Temperature sensing with fluorescence intensity ratio technique in epoxy-based nanocomposite filled with Er3+-doped 7YSZ,” Compos. Sci. Technol. 72, 1008–1011 (2012).
[CrossRef]

Lin, Y. F.

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd. 439, 367–375 (2007).
[CrossRef]

Lin, Y. J.

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd. 439, 367–375 (2007).
[CrossRef]

Lisiecki, R.

W. Ryba-Romanowski, R. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

Liu, B.

B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
[CrossRef]

Liu, X.

B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
[CrossRef]

Liu, X. G.

F. Wang, X. J. Xue, and X. G. Liu, “Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation,” Angew. Chem. Int. Ed. 47, 906–909 (2008).
[CrossRef]

Lu, M.

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4crystal,” J. Cryst. Growth 200, 199–203 (1999).
[CrossRef]

Luis, S. F. L.

P. H. Gonzalez, S. F. L. Luis, S. G. Perez, and I. R. Martýn, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46, 1051–1054 (2011).
[CrossRef]

Lulty, W.

P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994).
[CrossRef]

Martýn, I. R.

P. H. Gonzalez, S. F. L. Luis, S. G. Perez, and I. R. Martýn, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46, 1051–1054 (2011).
[CrossRef]

Meng, X.

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4crystal,” J. Cryst. Growth 200, 199–203 (1999).
[CrossRef]

Meyn, J. P.

A. I. Zaguniennyi, V. G. Ostoumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Millan, A.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010).
[CrossRef]

Moos, H. W.

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
[CrossRef]

Morris, P. J.

P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994).
[CrossRef]

Nan, C. W.

Y. Shen, X. Wang, H. He, Y. Lin, and C. W. Nan, “Temperature sensing with fluorescence intensity ratio technique in epoxy-based nanocomposite filled with Er3+-doped 7YSZ,” Compos. Sci. Technol. 72, 1008–1011 (2012).
[CrossRef]

Naruke, H.

T. Yamase, T. Kobayashi, M. Sugeta, and H. Naruke, “Europium(III) luminescence and intramolecular energy transfer studies of polyoxometalloeuropates,” J. Phys. Chem. A 101, 5046–5053 (1997).
[CrossRef]

Ni, C.

B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
[CrossRef]

Noel, E. B.

E. B. Noel, W. D. Turley, and S. W. Allison, “Thermographic phosphor temperature measurements: commercial and defense-related applications,” in Proceedings of the 40th International Instrumentation Symposium (Instrument Society of America, 1994), pp. 271–288.

Omrane, A.

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energy Combust. Sci. 37, 422–461 (2011).
[CrossRef]

Ostoumov, V. G.

A. I. Zaguniennyi, V. G. Ostoumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Palacio, F.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010).
[CrossRef]

Palmer, A. W.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998).
[CrossRef]

Perez, S. G.

P. H. Gonzalez, S. F. L. Luis, S. G. Perez, and I. R. Martýn, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46, 1051–1054 (2011).
[CrossRef]

Post, M. E.

L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

Pramanik, P.

S. Ray, A. Banerjee, and P. Pramanik, “A novel rock-like nanoarchitecture of YVO4:Eu3+ phosphor: selective synthesis, characterization, and luminescence behavior,” J. Mater. Sci. 45, 259–267 (2010).
[CrossRef]

Qi, Z.

B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
[CrossRef]

Rai, S. B.

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149, 16–20 (2009).
[CrossRef]

V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: an example of Pr3+,” Appl. Phys. B 87, 323–325 (2007).
[CrossRef]

Rai, V. K.

V. K. Rai and C. B. de Araujo, “Limit of accuracy for fluorescence lifetime temperature sensing,” Spectrochim. Acta A 71, 116–118 (2008).
[CrossRef]

V. K. Rai and C. B. Araujo, “Fluorescence intensity ratio technique for Sm3+ doped calibo glass,” Spectrochim. Acta A 69, 509–512 (2008).
[CrossRef]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88, 297–303 (2007).
[CrossRef]

V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: an example of Pr3+,” Appl. Phys. B 87, 323–325 (2007).
[CrossRef]

Ramakrishnan, P.

M. Anitha, P. Ramakrishnan, A. Chatterjee, G. Alexander, and H. Singh, “Spectral properties and emission efficiencies of GdVO4 phosphors,” Appl. Phys. A 74, 153–162(2002).
[CrossRef]

Ramasamy, V.

S. R. Anishia, M. T. Jose, O. Annalakshmi, and V. Ramasamy, “Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors,” J. Lumin. 131, 2492–2498 (2011).
[CrossRef]

Ray, S.

S. Ray, A. Banerjee, and P. Pramanik, “A novel rock-like nanoarchitecture of YVO4:Eu3+ phosphor: selective synthesis, characterization, and luminescence behavior,” J. Mater. Sci. 45, 259–267 (2010).
[CrossRef]

Richter, M.

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energy Combust. Sci. 37, 422–461 (2011).
[CrossRef]

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19, 125304 (2008).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
[CrossRef]

Rousseve, P. A.

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129, 263–269 (2009).
[CrossRef]

Ryba-Romanowski, W.

W. Ryba-Romanowski, R. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

Särner, G.

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energy Combust. Sci. 37, 422–461 (2011).
[CrossRef]

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19, 125304 (2008).
[CrossRef]

Shcherbakov, I.

P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994).
[CrossRef]

Shcherbakov, I. A.

A. I. Zaguniennyi, V. G. Ostoumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Shen, Y.

Y. Shen, X. Wang, H. He, Y. Lin, and C. W. Nan, “Temperature sensing with fluorescence intensity ratio technique in epoxy-based nanocomposite filled with Er3+-doped 7YSZ,” Compos. Sci. Technol. 72, 1008–1011 (2012).
[CrossRef]

Shionoya, S.

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd ed. (CRC, 2007).

Silva, N. J. O.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011).
[CrossRef]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010).
[CrossRef]

Singh, H.

M. Anitha, P. Ramakrishnan, A. Chatterjee, G. Alexander, and H. Singh, “Spectral properties and emission efficiencies of GdVO4 phosphors,” Appl. Phys. A 74, 153–162(2002).
[CrossRef]

Singh, S. K.

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149, 16–20 (2009).
[CrossRef]

Smith, A. A.

L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

Song, C.

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ codoped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).
[CrossRef]

Studenikin, P. A.

P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994).
[CrossRef]

Sugeta, M.

T. Yamase, T. Kobayashi, M. Sugeta, and H. Naruke, “Europium(III) luminescence and intramolecular energy transfer studies of polyoxometalloeuropates,” J. Phys. Chem. A 101, 5046–5053 (1997).
[CrossRef]

Šulc, J.

W. Ryba-Romanowski, R. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

Sun, D.

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

Sun, T.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998).
[CrossRef]

Sun, Y.

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

Turley, W. D.

E. B. Noel, W. D. Turley, and S. W. Allison, “Thermographic phosphor temperature measurements: commercial and defense-related applications,” in Proceedings of the 40th International Instrumentation Symposium (Instrument Society of America, 1994), pp. 271–288.

van der Kolk, E.

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A=La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21, 115503 (2009).
[CrossRef]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
[CrossRef]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998).
[CrossRef]

Wang, C.

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4crystal,” J. Cryst. Growth 200, 199–203 (1999).
[CrossRef]

Wang, F.

F. Wang, X. J. Xue, and X. G. Liu, “Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation,” Angew. Chem. Int. Ed. 47, 906–909 (2008).
[CrossRef]

Wang, S.

M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002).
[CrossRef]

Wang, X.

Y. Shen, X. Wang, H. He, Y. Lin, and C. W. Nan, “Temperature sensing with fluorescence intensity ratio technique in epoxy-based nanocomposite filled with Er3+-doped 7YSZ,” Compos. Sci. Technol. 72, 1008–1011 (2012).
[CrossRef]

Wang, Z.

M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002).
[CrossRef]

Weber, H. P.

P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994).
[CrossRef]

Weber, M. J.

W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC, 2004).

Wu, J. H.

J. H. Wu and B. Yan, “Photoluminescence intensity of YxGd1−xVO4:Eu3+ dependence on hydrothermal synthesis time and variable ratio of Y/Gd,” J. Alloys Compd. 455, 485–488 (2008).
[CrossRef]

Xu, Z.

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

Xue, X. J.

F. Wang, X. J. Xue, and X. G. Liu, “Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation,” Angew. Chem. Int. Ed. 47, 906–909 (2008).
[CrossRef]

Yamamoto, H.

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd ed. (CRC, 2007).

Yamase, T.

T. Yamase, T. Kobayashi, M. Sugeta, and H. Naruke, “Europium(III) luminescence and intramolecular energy transfer studies of polyoxometalloeuropates,” J. Phys. Chem. A 101, 5046–5053 (1997).
[CrossRef]

Yan, B.

J. H. Wu and B. Yan, “Photoluminescence intensity of YxGd1−xVO4:Eu3+ dependence on hydrothermal synthesis time and variable ratio of Y/Gd,” J. Alloys Compd. 455, 485–488 (2008).
[CrossRef]

Yang, T.

B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123, 667–670 (2007).
[CrossRef]

Yen, W. M.

W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC, 2004).

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd ed. (CRC, 2007).

Yu, M.

M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002).
[CrossRef]

Zagumenyi, A. I.

P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994).
[CrossRef]

Zaguniennyi, A. I.

A. I. Zaguniennyi, V. G. Ostoumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Zavarstev, Y. D.

P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994).
[CrossRef]

Zhang, G.

B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
[CrossRef]

Zhang, H.

M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002).
[CrossRef]

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4crystal,” J. Cryst. Growth 200, 199–203 (1999).
[CrossRef]

Zhang, Z. P.

K. T. V. Grattan and Z. P. Zhang, “Fiber optic luminescence thermometry,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds. (Kluwer, 1998), pp. 133–204.

Zhang, Z. Y.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998).
[CrossRef]

Zhao, Q.

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

Zhu, L.

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4crystal,” J. Cryst. Growth 200, 199–203 (1999).
[CrossRef]

Adv. Mater. (1)

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010).
[CrossRef]

Angew. Chem. Int. Ed. (1)

F. Wang, X. J. Xue, and X. G. Liu, “Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation,” Angew. Chem. Int. Ed. 47, 906–909 (2008).
[CrossRef]

Annu. Rev. Mater. Res. (1)

M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res. 39, 325–359 (2009).
[CrossRef]

Appl. Phys. A (1)

M. Anitha, P. Ramakrishnan, A. Chatterjee, G. Alexander, and H. Singh, “Spectral properties and emission efficiencies of GdVO4 phosphors,” Appl. Phys. A 74, 153–162(2002).
[CrossRef]

Appl. Phys. B (2)

V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: an example of Pr3+,” Appl. Phys. B 87, 323–325 (2007).
[CrossRef]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88, 297–303 (2007).
[CrossRef]

Chem. Mater. (1)

M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ codoped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).
[CrossRef]

Compos. Sci. Technol. (1)

Y. Shen, X. Wang, H. He, Y. Lin, and C. W. Nan, “Temperature sensing with fluorescence intensity ratio technique in epoxy-based nanocomposite filled with Er3+-doped 7YSZ,” Compos. Sci. Technol. 72, 1008–1011 (2012).
[CrossRef]

CrystEngComm (1)

Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012).
[CrossRef]

J. Alloys Compd. (2)

Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd. 439, 367–375 (2007).
[CrossRef]

J. H. Wu and B. Yan, “Photoluminescence intensity of YxGd1−xVO4:Eu3+ dependence on hydrothermal synthesis time and variable ratio of Y/Gd,” J. Alloys Compd. 455, 485–488 (2008).
[CrossRef]

J. Appl. Phys. (2)

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998).
[CrossRef]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

J. Cryst. Growth (1)

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4crystal,” J. Cryst. Growth 200, 199–203 (1999).
[CrossRef]

J. Lumin. (3)

S. R. Anishia, M. T. Jose, O. Annalakshmi, and V. Ramasamy, “Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors,” J. Lumin. 131, 2492–2498 (2011).
[CrossRef]

A. L. Heyes, “On the design of phosphors for high-temperature thermometry,” J. Lumin. 129, 2004–2009 (2009).
[CrossRef]

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129, 263–269 (2009).
[CrossRef]

J. Mater. Sci. (1)

S. Ray, A. Banerjee, and P. Pramanik, “A novel rock-like nanoarchitecture of YVO4:Eu3+ phosphor: selective synthesis, characterization, and luminescence behavior,” J. Mater. Sci. 45, 259–267 (2010).
[CrossRef]

J. Phys. Chem. A (1)

T. Yamase, T. Kobayashi, M. Sugeta, and H. Naruke, “Europium(III) luminescence and intramolecular energy transfer studies of polyoxometalloeuropates,” J. Phys. Chem. A 101, 5046–5053 (1997).
[CrossRef]

J. Phys. Condens. Matter (1)

A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A=La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21, 115503 (2009).
[CrossRef]

Mater. Res. Bull. (1)

P. H. Gonzalez, S. F. L. Luis, S. G. Perez, and I. R. Martýn, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46, 1051–1054 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19, 125304 (2008).
[CrossRef]

Nanoscale (2)

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[CrossRef]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
[CrossRef]

New J. Chem. (1)

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011).
[CrossRef]

Opt. Commun. (1)

P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994).
[CrossRef]

Phys. Rev. (1)

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
[CrossRef]

Prog. Energy Combust. Sci. (1)

M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energy Combust. Sci. 37, 422–461 (2011).
[CrossRef]

Prog. Quantum Electron. (1)

W. Ryba-Romanowski, R. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011).
[CrossRef]

Rev. Sci. Instrum. (3)

N. Fuhrmann, E. Baum, J. Brübach, and A. Dreizler, “High-speed phosphor thermometry,” Rev. Sci. Instrum. 82, 104903 (2011).
[CrossRef]

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997).
[CrossRef]

L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989).
[CrossRef]

Sens. Actuators A Phys. (1)

S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149, 16–20 (2009).
[CrossRef]

Sens. Actuators B Chem. (1)

B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123, 667–670 (2007).
[CrossRef]

Sensors (1)

A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008).
[CrossRef]

Solid State Commun. (1)

B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. I. Zaguniennyi, V. G. Ostoumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992).
[CrossRef]

Spectrochim. Acta A (2)

V. K. Rai and C. B. de Araujo, “Limit of accuracy for fluorescence lifetime temperature sensing,” Spectrochim. Acta A 71, 116–118 (2008).
[CrossRef]

V. K. Rai and C. B. Araujo, “Fluorescence intensity ratio technique for Sm3+ doped calibo glass,” Spectrochim. Acta A 69, 509–512 (2008).
[CrossRef]

Other (6)

W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC, 2004).

C. Görlier-Walrand and K. Binnemans, “Spectral intensities of f-f transitions,” in Handbook on the Physics and Chemistry of Rare Earths, , K. A. Gschneidner and J. L. Eyring, eds. (North-Holland, 1998), Vol. 25, Chap. 167, pp. 101–264.

E. B. Noel, W. D. Turley, and S. W. Allison, “Thermographic phosphor temperature measurements: commercial and defense-related applications,” in Proceedings of the 40th International Instrumentation Symposium (Instrument Society of America, 1994), pp. 271–288.

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd ed. (CRC, 2007).

K. T. V. Grattan and Z. P. Zhang, “Fiber optic luminescence thermometry,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds. (Kluwer, 1998), pp. 133–204.

B. Di Bartolo and J. Collins, “Luminescence spectroscopy,” in Handbook of Applied Solid State Spectroscopy, D. R. Vij, ed. (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic energy level diagram of the three-level model of a typical fluorescent ion.

Fig. 2.
Fig. 2.

Typical emission spectra of GdVO4:6mol.%Eu3+ sample over a temperature range of 298–823 K.

Fig. 3.
Fig. 3.

(a) Temperature dependence of the FIR ratio R=I538/I594 for three concentrations of Eu3+ ions and (b) curves of calculated sensor sensitivities as a function of temperature.

Fig. 4.
Fig. 4.

Typical emission spectra of GdVO4:2mol.%Dy3+ sample over a temperature range of 298–723 K.

Fig. 5.
Fig. 5.

(a) Temperature dependence of the FIR ratio R=I455/I484 for three concentrations of Dy3+ and (b) curves of calculated sensor sensitivities as a function of temperature.

Fig. 6.
Fig. 6.

Temperature quenching of Eu3+ emission by MPR.

Fig. 7.
Fig. 7.

Temperature quenching of Eu3+ emission through the CT region.

Fig. 8.
Fig. 8.

Temperature dependence of the excitation spectra of GdVO4:3mol.%Eu3+ sample.

Fig. 9.
Fig. 9.

Temperature dependence of (a) maximum energy values and (b) absorption edges for GdVO4:3mol.%Eu3+.

Fig. 10.
Fig. 10.

Temperature quenching of Eu3+ emission by temperature-dependant CT through VO43 groups.

Fig. 11.
Fig. 11.

Experimental and theoretical temperature dependence of the emission decays in (a) Eu3+-doped GdVO4 (D50 level) and (b) Dy3+-doped GdVO4 (F49/2 level). Insets show characteristic emission decay curves for both systems.

Fig. 12.
Fig. 12.

XRD patterns of Eu- and Dy-doped GdVO4 with standard data of bulk GdVO4 (vertical bars at the bottom).

Tables (3)

Tables Icon

Table 1. Fitted Values of Experimental Lifetime Data for GdVO4:Eu3+ and GdVO4:Dy3+ Systems Using MPR Model

Tables Icon

Table 2. Fitted Values of Experimental Lifetime Data for GdVO4:Eu3+ and GdVO4:Dy3+ Systems Using CT Model

Tables Icon

Table 3. Fitted Values of Experimental Lifetime Data for GdVO4:Eu3+ and GdVO4:Dy3+ Systems Using TDCT Model

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R=I20/I10=Bexp(ΔE21/kBT),
SFIR=1/R×dR/dT=ΔE21/kBT2.
τmeas=1/[Wr+Wnr(T)],
Wnr(T)=Wnr(0)×{1/[exp(ω/kBT)1]+1}p,
Wnr(T)=Wnr(0)×(1/T*1/2)×exp(Ea/kBT*),T*=(ω/2kB)coth(ω/2kBT).
WCT(T)=Wnr(0)×(1/T*1/2)×exp[(Ea+αT)/kBT*],T*=(ω/2kB)×coth(ω/2kBT).

Metrics