Abstract

A method to suppress backreflection noise due to facet reflection in a resonator integrated optic gyro (RIOG) is demonstrated using hybrid phase-modulation technology (HPMT). First, calculations are carried out to evaluate the effect of the backreflection. Although its amplitude has been remarkably decreased by angle polishing, residual backreflection noise is still a severe factor in RIOGs. Next, a hybrid phase-modulation method to eliminate the backreflection noise is constructed, and the frequency spectra of the photodetector outputs before and after adopting HPMT are analyzed. Theoretical analysis shows that the backreflection noise spectra will split from each other as a result of the hybrid phase modulation. In association with the pectinate-filter characteristics of digital correlation detection, the backreflection noise can be suppressed. Finally, the RIOG experimental setup is established and compared with opposite-slope triangle phase-modulation technology. HPMT has the advantage of suppressing backreflection noise, with the RIOG bias stability greatly improved from 2.34 to 0.22deg/s (10 s integration time).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription