Abstract

A method to suppress backreflection noise due to facet reflection in a resonator integrated optic gyro (RIOG) is demonstrated using hybrid phase-modulation technology (HPMT). First, calculations are carried out to evaluate the effect of the backreflection. Although its amplitude has been remarkably decreased by angle polishing, residual backreflection noise is still a severe factor in RIOGs. Next, a hybrid phase-modulation method to eliminate the backreflection noise is constructed, and the frequency spectra of the photodetector outputs before and after adopting HPMT are analyzed. Theoretical analysis shows that the backreflection noise spectra will split from each other as a result of the hybrid phase modulation. In association with the pectinate-filter characteristics of digital correlation detection, the backreflection noise can be suppressed. Finally, the RIOG experimental setup is established and compared with opposite-slope triangle phase-modulation technology. HPMT has the advantage of suppressing backreflection noise, with the RIOG bias stability greatly improved from 2.34 to 0.22deg/s (10 s integration time).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
    [CrossRef]
  2. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).
  3. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Aremenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010).
    [CrossRef]
  4. C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
    [CrossRef]
  5. Yu. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
    [CrossRef]
  6. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
    [CrossRef]
  7. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25, 4448–4451 (1986).
    [CrossRef]
  8. Z. Jin, Z. Yang, H. Ma, and D. Ying, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
    [CrossRef]
  9. K. Takada, H. Yamada, Y. Hida, Y. Ohmori, and S. Mitachi, “Rayleigh backscattering measurement of 10 m long silica-based waveguides,” Electron. Lett. 32, 1665–1667 (1996).
    [CrossRef]
  10. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).
    [CrossRef]
  11. G. P. Lees, M. J. Cole, and T. P. Newson, “Narrow linewidth, Q-switched erbium doped fibre laser,” Electron. Lett. 32, 1299–1300 (1996).
    [CrossRef]
  12. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013).
    [CrossRef]
  13. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
    [CrossRef]
  14. T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
    [CrossRef]
  15. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8, 644–646 (1983).
    [CrossRef]
  16. K. Hotate, K. Takiguchi, and A. Hirose, “Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990).
    [CrossRef]
  17. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).
    [CrossRef]
  18. H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011).
    [CrossRef]
  19. H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
    [CrossRef]
  20. L.-F. Hong, C.-X. Zhang, L.-S. Feng, H.-Y. Yu, and L. Ming, “Frequency modulation induced by using the linear phase modulation method used in a resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
    [CrossRef]
  21. X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
    [CrossRef]
  22. P. R. Moeller and W. K. Burns, “1.06 μm all-fiber gyroscope with noise subtraction,” Opt. Lett. 16, 1902–1904 (1991).
    [CrossRef]
  23. X. Zhang and K. Zhou, “Open-loop experiments of resonator micro-optic gyro,” Optoelectron. Lett. 5, 97–100 (2009).
    [CrossRef]

2013 (1)

2012 (2)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

L.-F. Hong, C.-X. Zhang, L.-S. Feng, H.-Y. Yu, and L. Ming, “Frequency modulation induced by using the linear phase modulation method used in a resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

2011 (4)

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011).
[CrossRef]

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
[CrossRef]

2010 (1)

2009 (2)

2008 (1)

Yu. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

2007 (1)

Z. Jin, Z. Yang, H. Ma, and D. Ying, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
[CrossRef]

2001 (1)

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

2000 (2)

1996 (2)

K. Takada, H. Yamada, Y. Hida, Y. Ohmori, and S. Mitachi, “Rayleigh backscattering measurement of 10 m long silica-based waveguides,” Electron. Lett. 32, 1665–1667 (1996).
[CrossRef]

G. P. Lees, M. J. Cole, and T. P. Newson, “Narrow linewidth, Q-switched erbium doped fibre laser,” Electron. Lett. 32, 1299–1300 (1996).
[CrossRef]

1991 (1)

1990 (2)

T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
[CrossRef]

K. Hotate, K. Takiguchi, and A. Hirose, “Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990).
[CrossRef]

1986 (1)

1983 (1)

Aremenise, M. N.

Armenise, M. N.

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013).
[CrossRef]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).

Barbour, N.

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

Burns, W. K.

Campanella, C. E.

Cardarelli, D.

T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
[CrossRef]

Ciminelli, C.

Cole, M. J.

G. P. Lees, M. J. Cole, and T. P. Newson, “Narrow linewidth, Q-switched erbium doped fibre laser,” Electron. Lett. 32, 1299–1300 (1996).
[CrossRef]

Dell’Olio, F.

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013).
[CrossRef]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Aremenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010).
[CrossRef]

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).

Ezekiel, S.

Feng, L.

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

Feng, L.-S.

L.-F. Hong, C.-X. Zhang, L.-S. Feng, H.-Y. Yu, and L. Ming, “Frequency modulation induced by using the linear phase modulation method used in a resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

Green, W. M. J.

Yu. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

He, Z.

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011).
[CrossRef]

Hida, Y.

K. Takada, H. Yamada, Y. Hida, Y. Ohmori, and S. Mitachi, “Rayleigh backscattering measurement of 10 m long silica-based waveguides,” Electron. Lett. 32, 1665–1667 (1996).
[CrossRef]

Higashiguchi, M.

Hirose, A.

K. Hotate, K. Takiguchi, and A. Hirose, “Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990).
[CrossRef]

Hong, L.

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

Hong, L.-F.

L.-F. Hong, C.-X. Zhang, L.-S. Feng, H.-Y. Yu, and L. Ming, “Frequency modulation induced by using the linear phase modulation method used in a resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

Hotate, K.

Iwatsuki, K.

Jin, Z.

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
[CrossRef]

Z. Jin, Z. Yang, H. Ma, and D. Ying, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
[CrossRef]

Kaiser, T. J.

T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
[CrossRef]

Lees, G. P.

G. P. Lees, M. J. Cole, and T. P. Newson, “Narrow linewidth, Q-switched erbium doped fibre laser,” Electron. Lett. 32, 1299–1300 (1996).
[CrossRef]

Lei, M.

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

Ma, H.

Mao, H.

Meyer, R. E.

Ming, L.

L.-F. Hong, C.-X. Zhang, L.-S. Feng, H.-Y. Yu, and L. Ming, “Frequency modulation induced by using the linear phase modulation method used in a resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

Mitachi, S.

K. Takada, H. Yamada, Y. Hida, Y. Ohmori, and S. Mitachi, “Rayleigh backscattering measurement of 10 m long silica-based waveguides,” Electron. Lett. 32, 1665–1667 (1996).
[CrossRef]

Moeller, P. R.

Newson, T. P.

G. P. Lees, M. J. Cole, and T. P. Newson, “Narrow linewidth, Q-switched erbium doped fibre laser,” Electron. Lett. 32, 1299–1300 (1996).
[CrossRef]

Ohmori, Y.

K. Takada, H. Yamada, Y. Hida, Y. Ohmori, and S. Mitachi, “Rayleigh backscattering measurement of 10 m long silica-based waveguides,” Electron. Lett. 32, 1665–1667 (1996).
[CrossRef]

Passaro, V. M. N.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).

Passenberg, W.

Schmidt, G.

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

Soares, F. M.

Stowe, D. W.

Suzuki, K.

Takada, K.

K. Takada, H. Yamada, Y. Hida, Y. Ohmori, and S. Mitachi, “Rayleigh backscattering measurement of 10 m long silica-based waveguides,” Electron. Lett. 32, 1665–1667 (1996).
[CrossRef]

Takiguchi, K.

Tekippe, V. J.

Vlasov, Yu.

Yu. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Walsh, J. G.

T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
[CrossRef]

Wang, X.

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

Xia, F.

Yu. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Yamada, H.

K. Takada, H. Yamada, Y. Hida, Y. Ohmori, and S. Mitachi, “Rayleigh backscattering measurement of 10 m long silica-based waveguides,” Electron. Lett. 32, 1665–1667 (1996).
[CrossRef]

Yang, Z.

Z. Jin, Z. Yang, H. Ma, and D. Ying, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
[CrossRef]

Ying, D.

Z. Jin, Z. Yang, H. Ma, and D. Ying, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
[CrossRef]

Yu, H.

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

Yu, H.-Y.

L.-F. Hong, C.-X. Zhang, L.-S. Feng, H.-Y. Yu, and L. Ming, “Frequency modulation induced by using the linear phase modulation method used in a resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

Zhang, C.

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

Zhang, C.-X.

L.-F. Hong, C.-X. Zhang, L.-S. Feng, H.-Y. Yu, and L. Ming, “Frequency modulation induced by using the linear phase modulation method used in a resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

Zhang, X.

X. Zhang and K. Zhou, “Open-loop experiments of resonator micro-optic gyro,” Optoelectron. Lett. 5, 97–100 (2009).
[CrossRef]

Zhou, K.

X. Zhang and K. Zhou, “Open-loop experiments of resonator micro-optic gyro,” Optoelectron. Lett. 5, 97–100 (2009).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Chin. Phys. Lett. (1)

L.-F. Hong, C.-X. Zhang, L.-S. Feng, H.-Y. Yu, and L. Ming, “Frequency modulation induced by using the linear phase modulation method used in a resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

Electron. Lett. (2)

K. Takada, H. Yamada, Y. Hida, Y. Ohmori, and S. Mitachi, “Rayleigh backscattering measurement of 10 m long silica-based waveguides,” Electron. Lett. 32, 1665–1667 (1996).
[CrossRef]

G. P. Lees, M. J. Cole, and T. P. Newson, “Narrow linewidth, Q-switched erbium doped fibre laser,” Electron. Lett. 32, 1299–1300 (1996).
[CrossRef]

Europhys. Lett. (1)

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

IEEE Photon. J. (1)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Jin, Z. Yang, H. Ma, and D. Ying, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
[CrossRef]

K. Hotate, K. Takiguchi, and A. Hirose, “Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990).
[CrossRef]

IEEE Sens. J. (1)

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

J. Lightwave Technol. (4)

Jpn. J. Appl. Phys. (1)

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

Nat. Photonics (1)

Yu. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Optoelectron. Lett. (1)

X. Zhang and K. Zhou, “Open-loop experiments of resonator micro-optic gyro,” Optoelectron. Lett. 5, 97–100 (2009).
[CrossRef]

Proc. SPIE (1)

T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
[CrossRef]

Other (1)

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic illustration of the RIOG with two facet-reflection dots. ISO, isolator; IOM, integrated optical modulator; PM1, PM2, phase modulators; SG1, SG2, signal generators; C1, C2, C3, couplers; OWRR, optical waveguide ring resonator; PD1, PD2, photodetectors.

Fig. 2.
Fig. 2.

Normalized output intensity in a period when located (a) outside and (b) inside the region of the resonant valley.

Fig. 3.
Fig. 3.

Simulation results of the backreflection noise frequency spectrum with TPMT, and the amplitude–frequency response of the correlation detection.

Fig. 4.
Fig. 4.

Simulation results of the backreflection noise frequency spectrum with HPMT and the amplitude–frequency response of the correlation detection.

Fig. 5.
Fig. 5.

Output of PDs by adjusting the temperature to realize the optical frequency sweep.

Fig. 6.
Fig. 6.

Output of PDs (left) and frequency spectrum (right) with TPMT (top) and HPMT (bottom).

Fig. 7.
Fig. 7.

RIOG output under conditions of TPMT and HPMT.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E0(t)=E0exp[i(ωt+ϕ0)]=E0exp[i(2πf0t+ϕ0)],
Vt(t)={2Vtriftri(t14ftriqftri)(kTtri<tkTtri+Ttri/2)2Vtriftri(t34ftriqftri)(kTtri+Ttri/2t<(k+1)Ttri),
Ecw_input(t)=(1αPM)(1αC)2E0exp[i(2πf0t+πVπVt(t)+ϕ0)],
Eccw_input(t)=(1αPM)(1αC)2E0exp[i(2πf0t+πVπVt(t)+ϕ0)],
Eccw_output(t)=(1αPM)(1αC)2E0hnexp[i(2πf0t+πVπVt(t)+ϕ0+ϕn)],
hn=(1αC3)[1ρ(1Q)2(1Q)2+4Qsin2(ωτ/2)],
ϕn=arctan[RsinωτT+(TQ+R)Q(2TQ+R)cosωτ].
ρ=111αC3[T(TQ+R)(1Q)]2,
T=1kC31αC3,
R=kC3(1αC3)1αL,
Q=1αL1kC31αC3,
Ecw_back(t)=2RB2×Ecw_input(t)×exp(iπ)=2(1αPM)(1αC)RB4E0exp[i(2πf0t+πVπVt(t)+ϕ0+π)].
I2=(Eccw_output(t)+Eccw_back(t))*(Eccw_output(t)+Eccw_back(t))=(1αPM)(1αC)4E02(hn2+RB2)2RB(1αPM)(1αC)4E02hncos(πVπ(Vt(t)Vt(t))-ϕn).
I2=(1αPM)(1αC)4I0[(hn2+RB2)2RBhncos(2πVπVt(t)ϕn)].
I2I0=(1αPM)(1αC)4[(hn2+RB2)2RBhncos(2πVπVt(t)ϕn)].
I2I0=2RBhn(1αPM)(1αC)cos(2πVπVt(t)ϕn)4.
I2I0=G{[J0(M1)+2n=0m=1(1)n(2n+1)2J2m(M1)cos2m(2n+1)×2πftrit]cosϕn+[2n=0m=1(1)n(2n+1)2J2m1(M1)sin(2m1)(2n+1)×2πftrit]sinϕn},
G=2RBhn(1αPM)(1αC)4.
M1=2πVπ×4Vtriπ2=8Vtriπ×Vπ.
I2I0=G{[(J0(M1)+2n=0m=1(1)n(2n+1)2J2m(M1)cos2m(2n+1)×2πftrit)×(J0(M2)+2p=1q=1J2q(M2)cos2pq×2πfsawt)(2n=0m=1(1)n(2n+1)2J2m1(M1)sin(2m1)(2n+1)×2πftrit)×(2p=0q=1J2q1(M2)sin(2q1)p×2πfsawt)]cosϕn+[(2n=0m=1(-1)n(2n+1)2J2m1(M1)sin(2m1)(2n+1)×2πftrit)×(J0(M2)+2p=1q=1J2q(M2)cos2pq×2πfsawt)(J0(M1)+2n=0m=1(1)n(2n+1)2J2m(M1)cos2m(2n+1)×2πftrit)×(2p=0q=1J2q1(M2)sin(2q1)p×2πfsawt)]sinϕn},

Metrics