Abstract

We present a method for producing monolithically integrated complementary metal–oxide–semiconductor (CMOS) optical filters with different and customer-specific responses. The filters are constituted by a Fabry–Perot resonator formed by two Bragg mirrors separated by a patterned cavity. The filter response can be tuned by changing the geometric parameters of the patterning, and consequently the cavity effective refractive index. In this way, many different filters can be produced at once on a single chip, allowing multichanneling. The filter has been designed, produced, and characterized. The results for a chip with 24 filters are presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
    [CrossRef]
  2. A. Lambrechts, K. Tack, and F. Pessolano, “Multispectral/hyperspectral imaging: CMOS takes hyperspectral imaging beyond the laboratory,” (2011) http://www.laserfocusworld.com/content/lfw/en/articles/print/volume-47/issue-5/features/multispectral-hyperspectral-imaging-cmos-takes-hyperspectral-imaging-beyond-the-laboratory.html .
  3. R. Thryft, “Tiny camera sees nonvisible spectra,” UDM Electronics (2012) http://www.designnews.com/author.asp?section_id=1392&doc_id=238563&print=yes .
  4. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminium nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
    [CrossRef]
  5. A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
    [CrossRef]
  6. J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “A CMOS optical microspectrometer with light-to-frequency converter, bus interface, and stray-light compensation,” IEEE Trans. Instrum. Meas. 6, 1530–1537 (2002).
  7. D. A. G. Bruggemann, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636–664 (1935).
    [CrossRef]
  8. J. C. M. Garnett, “Colors in metal glasses and metal films,” Phil. Trans. R. Soc. A 53, 385–420 (1904).
    [CrossRef]
  9. C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and E. A. Navarro, “Determination of the effective permittivity of dielectric mixtures with the transmission line matrix method,” J. Appl. Phys. 102, 064101 (2007).
    [CrossRef]
  10. O. Stenzel, Physics of Thin Film Optical Spectra (Springer-Verlag, 2005), pp. 45–53.
  11. P. Lalanne and M. Hutley, “The optical properties of artificial media structured at a subwavelength scale,” in Encyclopedia of Optical Engineering (Dekker, 2003), pp. 62–71.
  12. E. Aspnes and J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
    [CrossRef]
  13. D. Gäbler and D. Lerose, “CMOS-kompatibles Herstellungsverfahren zur Realisierung eines planaren hyperspektralen optischen Filters,” German Patent DE 10,2011,111,883.0 (31August2011).

2010

2007

C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and E. A. Navarro, “Determination of the effective permittivity of dielectric mixtures with the transmission line matrix method,” J. Appl. Phys. 102, 064101 (2007).
[CrossRef]

2006

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

2002

J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “A CMOS optical microspectrometer with light-to-frequency converter, bus interface, and stray-light compensation,” IEEE Trans. Instrum. Meas. 6, 1530–1537 (2002).

1998

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

1979

E. Aspnes and J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

1935

D. A. G. Bruggemann, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636–664 (1935).
[CrossRef]

1904

J. C. M. Garnett, “Colors in metal glasses and metal films,” Phil. Trans. R. Soc. A 53, 385–420 (1904).
[CrossRef]

Ahn, D.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Apsel, A. B.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Aspnes, E.

E. Aspnes and J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

Bartek, M.

J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “A CMOS optical microspectrometer with light-to-frequency converter, bus interface, and stray-light compensation,” IEEE Trans. Instrum. Meas. 6, 1530–1537 (2002).

Beals, M.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Benyattou, T.

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Blanchard, C.

C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and E. A. Navarro, “Determination of the effective permittivity of dielectric mixtures with the transmission line matrix method,” J. Appl. Phys. 102, 064101 (2007).
[CrossRef]

Blondeau, R.

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Bruggemann, D. A. G.

D. A. G. Bruggemann, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636–664 (1935).
[CrossRef]

Carothers, D.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Chen, Y.-K.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Conway, T.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Correia, J. H.

J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “A CMOS optical microspectrometer with light-to-frequency converter, bus interface, and stray-light compensation,” IEEE Trans. Instrum. Meas. 6, 1530–1537 (2002).

De Graaf, G.

J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “A CMOS optical microspectrometer with light-to-frequency converter, bus interface, and stray-light compensation,” IEEE Trans. Instrum. Meas. 6, 1530–1537 (2002).

Gäbler, D.

D. Gäbler and D. Lerose, “CMOS-kompatibles Herstellungsverfahren zur Realisierung eines planaren hyperspektralen optischen Filters,” German Patent DE 10,2011,111,883.0 (31August2011).

Garnett, J. C. M.

J. C. M. Garnett, “Colors in metal glasses and metal films,” Phil. Trans. R. Soc. A 53, 385–420 (1904).
[CrossRef]

Gill, D. M.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Grove, M.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Gruev, V.

Guillot, G.

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Hong, C.-Y.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Hutley, M.

P. Lalanne and M. Hutley, “The optical properties of artificial media structured at a subwavelength scale,” in Encyclopedia of Optical Engineering (Dekker, 2003), pp. 62–71.

Kimerling, L. C.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Lalanne, P.

P. Lalanne and M. Hutley, “The optical properties of artificial media structured at a subwavelength scale,” in Encyclopedia of Optical Engineering (Dekker, 2003), pp. 62–71.

Leclercq, J. L.

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

LeDantec, R.

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Lerose, D.

D. Gäbler and D. Lerose, “CMOS-kompatibles Herstellungsverfahren zur Realisierung eines planaren hyperspektralen optischen Filters,” German Patent DE 10,2011,111,883.0 (31August2011).

Lipson, M.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Liu, J.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Michel, J.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Morente, J. A.

C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and E. A. Navarro, “Determination of the effective permittivity of dielectric mixtures with the transmission line matrix method,” J. Appl. Phys. 102, 064101 (2007).
[CrossRef]

Navarro, E. A.

C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and E. A. Navarro, “Determination of the effective permittivity of dielectric mixtures with the transmission line matrix method,” J. Appl. Phys. 102, 064101 (2007).
[CrossRef]

Pan, D.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Patel, S. S.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Perkins, R.

Pomerene, A. T.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Portí, J. A.

C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and E. A. Navarro, “Determination of the effective permittivity of dielectric mixtures with the transmission line matrix method,” J. Appl. Phys. 102, 064101 (2007).
[CrossRef]

Rasras, M.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Rondi, D.

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Salinas, A.

C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and E. A. Navarro, “Determination of the effective permittivity of dielectric mixtures with the transmission line matrix method,” J. Appl. Phys. 102, 064101 (2007).
[CrossRef]

Seassal, C.

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Sparacin, D. K.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Spisser, A.

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

Stenzel, O.

O. Stenzel, Physics of Thin Film Optical Spectra (Springer-Verlag, 2005), pp. 45–53.

Theeten, J. B.

E. Aspnes and J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

Tu, K.-Y.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Viktorovitch, P.

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

White, A. E.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Wolffenbuttel, R. F.

J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “A CMOS optical microspectrometer with light-to-frequency converter, bus interface, and stray-light compensation,” IEEE Trans. Instrum. Meas. 6, 1530–1537 (2002).

Wong, C. W.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

York, T.

Ann. Phys.

D. A. G. Bruggemann, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636–664 (1935).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Spisser, R. LeDantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55 um InP/air-gap micromachined Fabry–Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10, 1259–1261 (1998).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “A CMOS optical microspectrometer with light-to-frequency converter, bus interface, and stray-light compensation,” IEEE Trans. Instrum. Meas. 6, 1530–1537 (2002).

J. Appl. Phys.

C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and E. A. Navarro, “Determination of the effective permittivity of dielectric mixtures with the transmission line matrix method,” J. Appl. Phys. 102, 064101 (2007).
[CrossRef]

Opt. Express

Phil. Trans. R. Soc. A

J. C. M. Garnett, “Colors in metal glasses and metal films,” Phil. Trans. R. Soc. A 53, 385–420 (1904).
[CrossRef]

Phys. Rev. B

E. Aspnes and J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).
[CrossRef]

Proc. SPIE

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
[CrossRef]

Other

A. Lambrechts, K. Tack, and F. Pessolano, “Multispectral/hyperspectral imaging: CMOS takes hyperspectral imaging beyond the laboratory,” (2011) http://www.laserfocusworld.com/content/lfw/en/articles/print/volume-47/issue-5/features/multispectral-hyperspectral-imaging-cmos-takes-hyperspectral-imaging-beyond-the-laboratory.html .

R. Thryft, “Tiny camera sees nonvisible spectra,” UDM Electronics (2012) http://www.designnews.com/author.asp?section_id=1392&doc_id=238563&print=yes .

D. Gäbler and D. Lerose, “CMOS-kompatibles Herstellungsverfahren zur Realisierung eines planaren hyperspektralen optischen Filters,” German Patent DE 10,2011,111,883.0 (31August2011).

O. Stenzel, Physics of Thin Film Optical Spectra (Springer-Verlag, 2005), pp. 45–53.

P. Lalanne and M. Hutley, “The optical properties of artificial media structured at a subwavelength scale,” in Encyclopedia of Optical Engineering (Dekker, 2003), pp. 62–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic representation of the filter in cross section on top of a simplified CMOS device, where only the top metal is shown. The oxide stack does not sketch all the various silicon oxide layers. Note that the filter is completely integrated in the device and protected by the standard passivation layer. The different patterning of the cavity layer can be tuned to achieve the desired transmission peak wavelength(s).

Fig. 2.
Fig. 2.

Comparison between the measured (continuous black curve) and simulated spectral filter response, where two different simulation results are shown. The blue dotted curve is obtained considering the complete oxide stack deriving from the CMOS process, while the dashed red curve is obtained simulating a simplified oxide stack for handier calculation. The agreement between measured and simulated data is excellent with regard to the transmission peak wavelength. The oscillations clearly visible between 980 and 1100 nm are due to the interference formed within the CMOS oxide stack, as they are not present in the simulation results with the simplified stack. It is noteworthy that the material parameters used in the simulation show a lower absorption around 600 nm (light is transmitted through the filter in the calculated spectra, but not in the measured one), but higher absorption at peak wavelength, as the measured peak is higher. This is due to the difficulty of modeling the absorption coefficient of a material which could be measured only in reflection.

Fig. 3.
Fig. 3.

Simulated transmission spectra for filters with different Si volume percentages in the cavity layer. Depending on such values, the transmission peak shifts while the other regions of the spectra remain basically unchanged. The simulations have been performed with full oxide stack (some ripples can be seen).

Fig. 4.
Fig. 4.

Experimental data which show the reduction of the stress of the deposited Si film obtained increasing the silane flow and the pressure. The optimized films add no significant stress to the CMOS wafers. The curves are only a guide for the eye.

Fig. 5.
Fig. 5.

SEM pictures at tilted angle of the patterned cavity layer before oxide filling. (a) Silicon hole pattern. (b) Silicon island pattern.

Fig. 6.
Fig. 6.

Cross-section SEM pictures of the filter stack on top of the CMOS device on the same chip. The cavity layer shows various patterns which differ in the volume percentage of Si, determining a different filter response. A lower Si volume in the cavity layer (on the left) corresponds to a transmission peak at lower wavelength than for higher Si volume (on the right).

Fig. 7.
Fig. 7.

Measured data which prove the high selectivity obtained tuning the etch recipe of the filter stack, needed to structuring the filter and, subsequently, reaching the pads. The initial recipes (empty triangles) show lower etch rate and higher selectivity, while the improved unselective etch recipes allow faster and handier processing. The curves are only a guide for the eye.

Fig. 8.
Fig. 8.

Filter response measured on one single chip which presents the described CMOS-integrated filter. The filter presents a cavity layer with 24 different patterns in correspondence of 24 photodiodes. The patterns are characterized by different volume percentages of Si in the cavity layer and have been set using simulations and confirmed by inline measurements of the feature areas. Such percentages are shown in the legend. The patterning of the cavity layer is the only difference among the filters. Therefore, all 24 filter responses are achieved contemporarily with the same process steps. Please note that only the upper visible spectral range is shown for clarity. In the blue range no signal is observed, as shown in Fig. 2.

Fig. 9.
Fig. 9.

Measured data of the filter response as a function of the impinging light angle. For wider angles the transmission peak wavelength blue-shifts and becomes broader.

Fig. 10.
Fig. 10.

Measured data of the filter response at different substrate temperatures. The optical properties of the filter do not significantly change in the considered temperature range. Minimal variation (1–2 nm) of the transmission peak wavelength is observed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λpeak=4·n·dphys

Metrics