Abstract

In order to explore the relation between the modulation transfer function (MTF) and the halo effect for low-light-level (LLL) image intensifiers, the MTF for the preproximity focusing electron-optical system is calculated according to the electron distribution on the microchannel plate input face. During the calculation, the halo effect from secondary scattered electrons is not treated. By tracing the trajectory of photoelectrons emitted from one point on a GaAs photocathode into the preproximity focusing electron-optical system, the electron distribution is calculated, namely the point spread function. The MTF for the preproximity focusing electron-optical system is numerically calculated according to the electron distribution, which is fitted. The results show that the fitting curve of the MTF is in agreement with the analytic expressions. When the spatial frequency is less than 50lp/mm, the relative error is below 5%. This research provides theoretical support for further development of LLL night-vision technology.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
    [CrossRef]
  2. L. Ren, B. K. Chang, and H. G. Wang, “Influence of built-in electric filed on the energy and emergence angle spreads of transmission-mode GaAs photocathode,” Opt. Commun. 285, 2650–2655 (2012).
    [CrossRef]
  3. L. Ren and B. K. Chang, “Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode,” Chin. Phys. B 20, 087308 (2011).
    [CrossRef]
  4. J. J. Zou, Y. J. Zhang, W. J. Deng, J. Y. Jin, and B. K. Chang, “Effect of different epitaxial structures on GaAs photoemission,” Appl. Opt. 50, 5228–5234 (2011).
    [CrossRef]
  5. Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
    [CrossRef]
  6. J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
    [CrossRef]
  7. W. Enloe, R. Sheldon, L. Reed, and A. Amith, “An electron-bombarded CCD image intensifier with a GaAs photocathode,” Proc. SPIE 1665, 41–49 (1992).
    [CrossRef]
  8. J. Glesener, and J. Estrera, “Two micron pore size MCP based image intensifiers,” Proc. SPIE 7598, 759814 (2010).
    [CrossRef]
  9. J. Keller, “Night-vision, image-intensifier tubes couple to digital cameras with relay lenses in digital-age upgrades,” Military Aerosp. Electron. 21, 40–41 (2010).
  10. A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
    [CrossRef]
  11. H. Q. Zhu, K. L. Wang, S. M. Xiang, and G. Z. Song, “Dynamic modulation transfer function measurement of image intensifiers using a narrow slit,” Rev. Sci. Instrum. 79, 023708 (2008).
    [CrossRef]
  12. J. F. Shi, S. Y. Wang, Y. N. Sun, and Q. Xie, “Third generation of image intensifier brightness gain measurement device,” J. Appl. Opt. 32, 300–302 (2011) (in Chinese).
  13. J. L. Yan, “Study on the modulation transfer function of ion barrier film at the input of microchannel plate,” J. Appl. Opt. 18, 20–23 (1997) (in Chinese).
  14. D. X. Cui, L. Ren, F. Shi, J. F. Shi, Y. S. Qian, H. G. Wang, and B. K. Chang, “Test and analysis of the halo in low-light-level image intensifiers,” Chin. Opt. Lett. 10, 060401 (2012).
    [CrossRef]
  15. E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).
  16. P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
    [CrossRef]
  17. C. B. Johnson, “Classification of electron-optical device modulation transfer functions,” Adv. Electron. Electron Phys. 33B, 579–584 (1972).
    [CrossRef]
  18. Q. G. Sheng, Theoretical Basis of the Camera Tube (Science, 1984).

2012

L. Ren, B. K. Chang, and H. G. Wang, “Influence of built-in electric filed on the energy and emergence angle spreads of transmission-mode GaAs photocathode,” Opt. Commun. 285, 2650–2655 (2012).
[CrossRef]

D. X. Cui, L. Ren, F. Shi, J. F. Shi, Y. S. Qian, H. G. Wang, and B. K. Chang, “Test and analysis of the halo in low-light-level image intensifiers,” Chin. Opt. Lett. 10, 060401 (2012).
[CrossRef]

2011

J. J. Zou, Y. J. Zhang, W. J. Deng, J. Y. Jin, and B. K. Chang, “Effect of different epitaxial structures on GaAs photoemission,” Appl. Opt. 50, 5228–5234 (2011).
[CrossRef]

L. Ren and B. K. Chang, “Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode,” Chin. Phys. B 20, 087308 (2011).
[CrossRef]

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

J. F. Shi, S. Y. Wang, Y. N. Sun, and Q. Xie, “Third generation of image intensifier brightness gain measurement device,” J. Appl. Opt. 32, 300–302 (2011) (in Chinese).

2010

J. Glesener, and J. Estrera, “Two micron pore size MCP based image intensifiers,” Proc. SPIE 7598, 759814 (2010).
[CrossRef]

J. Keller, “Night-vision, image-intensifier tubes couple to digital cameras with relay lenses in digital-age upgrades,” Military Aerosp. Electron. 21, 40–41 (2010).

2009

2008

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

H. Q. Zhu, K. L. Wang, S. M. Xiang, and G. Z. Song, “Dynamic modulation transfer function measurement of image intensifiers using a narrow slit,” Rev. Sci. Instrum. 79, 023708 (2008).
[CrossRef]

2007

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

2005

P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
[CrossRef]

2000

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

1997

J. L. Yan, “Study on the modulation transfer function of ion barrier film at the input of microchannel plate,” J. Appl. Opt. 18, 20–23 (1997) (in Chinese).

1992

W. Enloe, R. Sheldon, L. Reed, and A. Amith, “An electron-bombarded CCD image intensifier with a GaAs photocathode,” Proc. SPIE 1665, 41–49 (1992).
[CrossRef]

1972

C. B. Johnson, “Classification of electron-optical device modulation transfer functions,” Adv. Electron. Electron Phys. 33B, 579–584 (1972).
[CrossRef]

Allison, R. S.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
[CrossRef]

Amith, A.

W. Enloe, R. Sheldon, L. Reed, and A. Amith, “An electron-bombarded CCD image intensifier with a GaAs photocathode,” Proc. SPIE 1665, 41–49 (1992).
[CrossRef]

Bender, E. J.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Carnegie, D. A.

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

Carr, P.

P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
[CrossRef]

Chang, B. K.

D. X. Cui, L. Ren, F. Shi, J. F. Shi, Y. S. Qian, H. G. Wang, and B. K. Chang, “Test and analysis of the halo in low-light-level image intensifiers,” Chin. Opt. Lett. 10, 060401 (2012).
[CrossRef]

L. Ren, B. K. Chang, and H. G. Wang, “Influence of built-in electric filed on the energy and emergence angle spreads of transmission-mode GaAs photocathode,” Opt. Commun. 285, 2650–2655 (2012).
[CrossRef]

L. Ren and B. K. Chang, “Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode,” Chin. Phys. B 20, 087308 (2011).
[CrossRef]

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

J. J. Zou, Y. J. Zhang, W. J. Deng, J. Y. Jin, and B. K. Chang, “Effect of different epitaxial structures on GaAs photoemission,” Appl. Opt. 50, 5228–5234 (2011).
[CrossRef]

J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef]

Craig, G.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
[CrossRef]

Cree, M. J.

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

Cui, D. X.

Deng, W. J.

Dorrington, A. A.

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

Enloe, W.

W. Enloe, R. Sheldon, L. Reed, and A. Amith, “An electron-bombarded CCD image intensifier with a GaAs photocathode,” Proc. SPIE 1665, 41–49 (1992).
[CrossRef]

Estrera, J.

J. Glesener, and J. Estrera, “Two micron pore size MCP based image intensifiers,” Proc. SPIE 7598, 759814 (2010).
[CrossRef]

Estrera, J. P.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Giordana, A.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Glesener, J.

J. Glesener, and J. Estrera, “Two micron pore size MCP based image intensifiers,” Proc. SPIE 7598, 759814 (2010).
[CrossRef]

Glesener, J. W.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Hornsey, R.

P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
[CrossRef]

Iosue, M.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

James, E. Z.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

Jennings, S.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
[CrossRef]

Jin, J. Y.

Johnson, C. B.

C. B. Johnson, “Classification of electron-optical device modulation transfer functions,” Adv. Electron. Electron Phys. 33B, 579–584 (1972).
[CrossRef]

Keller, J.

J. Keller, “Night-vision, image-intensifier tubes couple to digital cameras with relay lenses in digital-age upgrades,” Military Aerosp. Electron. 21, 40–41 (2010).

Lin, P. P.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Macuda, T.

P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
[CrossRef]

Margarita, V.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

Niu, J.

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef]

Paul, T.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

Payne, A. D.

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

Qian, Y. S.

Reed, L.

W. Enloe, R. Sheldon, L. Reed, and A. Amith, “An electron-bombarded CCD image intensifier with a GaAs photocathode,” Proc. SPIE 1665, 41–49 (1992).
[CrossRef]

Ren, L.

L. Ren, B. K. Chang, and H. G. Wang, “Influence of built-in electric filed on the energy and emergence angle spreads of transmission-mode GaAs photocathode,” Opt. Commun. 285, 2650–2655 (2012).
[CrossRef]

D. X. Cui, L. Ren, F. Shi, J. F. Shi, Y. S. Qian, H. G. Wang, and B. K. Chang, “Test and analysis of the halo in low-light-level image intensifiers,” Chin. Opt. Lett. 10, 060401 (2012).
[CrossRef]

L. Ren and B. K. Chang, “Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode,” Chin. Phys. B 20, 087308 (2011).
[CrossRef]

Sheldon, R.

W. Enloe, R. Sheldon, L. Reed, and A. Amith, “An electron-bombarded CCD image intensifier with a GaAs photocathode,” Proc. SPIE 1665, 41–49 (1992).
[CrossRef]

Shen, E.

P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
[CrossRef]

Sheng, Q. G.

Q. G. Sheng, Theoretical Basis of the Camera Tube (Science, 1984).

Shi, F.

Shi, J. F.

D. X. Cui, L. Ren, F. Shi, J. F. Shi, Y. S. Qian, H. G. Wang, and B. K. Chang, “Test and analysis of the halo in low-light-level image intensifiers,” Chin. Opt. Lett. 10, 060401 (2012).
[CrossRef]

J. F. Shi, S. Y. Wang, Y. N. Sun, and Q. Xie, “Third generation of image intensifier brightness gain measurement device,” J. Appl. Opt. 32, 300–302 (2011) (in Chinese).

Sinor, T. W.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Song, G. Z.

H. Q. Zhu, K. L. Wang, S. M. Xiang, and G. Z. Song, “Dynamic modulation transfer function measurement of image intensifiers using a narrow slit,” Rev. Sci. Instrum. 79, 023708 (2008).
[CrossRef]

Stephen, A. P.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

Sun, Y. N.

J. F. Shi, S. Y. Wang, Y. N. Sun, and Q. Xie, “Third generation of image intensifier brightness gain measurement device,” J. Appl. Opt. 32, 300–302 (2011) (in Chinese).

Thomas, P. J.

P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
[CrossRef]

Todd, M.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

Tracey, B.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

Wang, H. G.

D. X. Cui, L. Ren, F. Shi, J. F. Shi, Y. S. Qian, H. G. Wang, and B. K. Chang, “Test and analysis of the halo in low-light-level image intensifiers,” Chin. Opt. Lett. 10, 060401 (2012).
[CrossRef]

L. Ren, B. K. Chang, and H. G. Wang, “Influence of built-in electric filed on the energy and emergence angle spreads of transmission-mode GaAs photocathode,” Opt. Commun. 285, 2650–2655 (2012).
[CrossRef]

Wang, K. L.

H. Q. Zhu, K. L. Wang, S. M. Xiang, and G. Z. Song, “Dynamic modulation transfer function measurement of image intensifiers using a narrow slit,” Rev. Sci. Instrum. 79, 023708 (2008).
[CrossRef]

Wang, S. Y.

J. F. Shi, S. Y. Wang, Y. N. Sun, and Q. Xie, “Third generation of image intensifier brightness gain measurement device,” J. Appl. Opt. 32, 300–302 (2011) (in Chinese).

Wilcox, L.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

Xiang, S. M.

H. Q. Zhu, K. L. Wang, S. M. Xiang, and G. Z. Song, “Dynamic modulation transfer function measurement of image intensifiers using a narrow slit,” Rev. Sci. Instrum. 79, 023708 (2008).
[CrossRef]

Xie, Q.

J. F. Shi, S. Y. Wang, Y. N. Sun, and Q. Xie, “Third generation of image intensifier brightness gain measurement device,” J. Appl. Opt. 32, 300–302 (2011) (in Chinese).

Xiong, Y. J.

Xu, G. C.

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

Yan, J. L.

J. L. Yan, “Study on the modulation transfer function of ion barrier film at the input of microchannel plate,” J. Appl. Opt. 18, 20–23 (1997) (in Chinese).

Yang, Z.

Zhang, Y. J.

Zhao, J.

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

Zhu, H. Q.

H. Q. Zhu, K. L. Wang, S. M. Xiang, and G. Z. Song, “Dynamic modulation transfer function measurement of image intensifiers using a narrow slit,” Rev. Sci. Instrum. 79, 023708 (2008).
[CrossRef]

Zou, J. J.

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

J. J. Zou, Y. J. Zhang, W. J. Deng, J. Y. Jin, and B. K. Chang, “Effect of different epitaxial structures on GaAs photoemission,” Appl. Opt. 50, 5228–5234 (2011).
[CrossRef]

Adv. Electron. Electron Phys.

C. B. Johnson, “Classification of electron-optical device modulation transfer functions,” Adv. Electron. Electron Phys. 33B, 579–584 (1972).
[CrossRef]

Appl. Opt.

Chin. Opt. Lett.

Chin. Phys. B

L. Ren and B. K. Chang, “Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode,” Chin. Phys. B 20, 087308 (2011).
[CrossRef]

IEEE Sens. J.

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

J. Appl. Opt.

J. F. Shi, S. Y. Wang, Y. N. Sun, and Q. Xie, “Third generation of image intensifier brightness gain measurement device,” J. Appl. Opt. 32, 300–302 (2011) (in Chinese).

J. L. Yan, “Study on the modulation transfer function of ion barrier film at the input of microchannel plate,” J. Appl. Opt. 18, 20–23 (1997) (in Chinese).

J. Appl. Phys.

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

Military Aerosp. Electron.

J. Keller, “Night-vision, image-intensifier tubes couple to digital cameras with relay lenses in digital-age upgrades,” Military Aerosp. Electron. 21, 40–41 (2010).

Opt. Commun.

L. Ren, B. K. Chang, and H. G. Wang, “Influence of built-in electric filed on the energy and emergence angle spreads of transmission-mode GaAs photocathode,” Opt. Commun. 285, 2650–2655 (2012).
[CrossRef]

Proc. SPIE

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

W. Enloe, R. Sheldon, L. Reed, and A. Amith, “An electron-bombarded CCD image intensifier with a GaAs photocathode,” Proc. SPIE 1665, 41–49 (1992).
[CrossRef]

J. Glesener, and J. Estrera, “Two micron pore size MCP based image intensifiers,” Proc. SPIE 7598, 759814 (2010).
[CrossRef]

E. Z. James, B. Tracey, T. Paul, V. Margarita, G. C. Xu, S. Jennings, M. Todd, A. P. Stephen, G. Craig, L. Wilcox, and R. S. Allison, “Effects of image intensifier halo on perceived layout,” Proc. SPIE 6557, 65570U (2007).

P. J. Thomas, R. S. Allison, P. Carr, E. Shen, S. Jennings, T. Macuda, G. Craig, and R. Hornsey, “Physical modeling and characterization of the halo phenomenon in night vision goggles,” Proc. SPIE 5800, 21–31 (2005).
[CrossRef]

Rev. Sci. Instrum.

H. Q. Zhu, K. L. Wang, S. M. Xiang, and G. Z. Song, “Dynamic modulation transfer function measurement of image intensifiers using a narrow slit,” Rev. Sci. Instrum. 79, 023708 (2008).
[CrossRef]

Other

Q. G. Sheng, Theoretical Basis of the Camera Tube (Science, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of beta distributions.

Fig. 2.
Fig. 2.

Trajectory of a photoelectron emitted from a GaAs photocathode in the preproximity tube.

Fig. 3.
Fig. 3.

Electron distribution on the MCP input face.

Fig. 4.
Fig. 4.

LSF of the electron distribution on the MCP input face.

Fig. 5.
Fig. 5.

MTF of beta distributions for the preproximity focusing electron-optical system.

Fig. 6.
Fig. 6.

MTF for the β1,8 distribution: the solid line shows the calculated curve and the dotted line shows the fitting curve.

Fig. 7.
Fig. 7.

Relative error between the fitting curve and the calculated curve.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

βm,n=(m+n+1)!m!n!(εεm)m(1εεm)n.
G(α)=cosα.
ΔN(ξi)=ξaξb(m+n+1)!m!n!ξm(1ξ)ndξ.
LSF(x+Δx/2)=xx+Δxn(x)dx.
MTF1,8=exp(15π2f2L2εmΦ).
fc=5Φπ2L2εm.

Metrics