Abstract

A high-power single-frequency 1178 nm continuous-wave laser is generated in a two-stage stimulated-Brillouin-scattering-suppressed all-polarization-maintaining Raman fiber amplifier pumped by 1120 nm fiber lasers. A polarization-extinction-ratio of 30 dB is achieved due to the all-polarization-maintaining configuration and the polarization dependence gain of Raman scattering. Single-pass frequency doubling with a homemade periodically poled near-stoichiometric LiTaO3 crystal (PPSLT) produces an up to 7 W narrow-linewidth laser at 589 nm. The thermally induced dephasing effect is found to be the key issue for improving second-harmonic efficiency.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43, L722–L724 (2004).
    [CrossRef]
  2. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,” Opt. Lett. 28, 2219–2221 (2003).
    [CrossRef]
  3. M. P. Kalita, S.-u. Alam, C. Codemard, S. Yoo, A. J. Boyland, M. Ibsen, and J. K. Sahu, “Multi-watts narrow-linewidth all fiber Yb-doped laser operating at 1179 nm,” Opt. Express 18, 5920–5925 (2010).
    [CrossRef]
  4. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express 17, 447–454 (2009).
    [CrossRef]
  5. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 18, 16345–16352 (2010).
    [CrossRef]
  6. M. Chen, A. Shirakawa, X. Fan, K.-i. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 20, 21044–21052 (2012).
    [CrossRef]
  7. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178 nm CW bismuth-doped fiber laser with 6.4 W output for direct frequency doubling,” Opt. Express 15, 5473–5476 (2007).
    [CrossRef]
  8. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44, 834–840 (2008).
    [CrossRef]
  9. J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
    [CrossRef]
  10. Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16, 10927–10932 (2008).
    [CrossRef]
  11. Y. Feng, L. R. Taylor, and D. B. Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17, 19021–19026 (2009).
    [CrossRef]
  12. L. R. Taylor, Y. Feng, and D. B. Calia, “50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18, 8540–8555 (2010).
    [CrossRef]
  13. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54 μm,” Opt. Lett. 17, 640–642 (1992).
    [CrossRef]
  14. T. Sudmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16, 1546–1551 (2008).
    [CrossRef]
  15. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Opt. Express 13, 6772–6776 (2005).
    [CrossRef]
  16. L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Multi-watt 589 nm Na D[sub 2]-line generation via frequency doubling of a Raman fiber amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).
  17. A. Shirakawa, C. B. Olausson, M. Chen, K.-i. Ueda, J. K. Lyngsø, and J. Broeng, “Power-scalable photonic bandgap fiber sources with 167 W, 1178 nm and 14.5 W, 589 nm radiations,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper APDP6.
  18. Y. Yuan, L. Zhang, Y. Liu, X. Lü, G. Zhao, Y. Feng, and S. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Technol. Sci. 56, 125–128 (2013).
    [CrossRef]
  19. J. Wang, L. Zhang, J. Hu, L. Si, J. Chen, X. Gu, and Y. Feng, “Efficient linearly polarized ytterbium-doped fiber laser at 1120 nm,” Appl. Opt. 51, 3801–3803 (2012).
    [CrossRef]
  20. L. Zhang, J. Hu, J. Wang, and Y. Feng, “Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star,” Opt. Lett. 37, 4796–4798 (2012).
  21. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98, 113103 (2005).
    [CrossRef]
  22. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16, 11294–11299 (2008).
    [CrossRef]

2013 (1)

Y. Yuan, L. Zhang, Y. Liu, X. Lü, G. Zhao, Y. Feng, and S. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Technol. Sci. 56, 125–128 (2013).
[CrossRef]

2012 (3)

2010 (3)

2009 (2)

2008 (4)

2007 (1)

2006 (2)

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Multi-watt 589 nm Na D[sub 2]-line generation via frequency doubling of a Raman fiber amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).

2005 (2)

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Opt. Express 13, 6772–6776 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98, 113103 (2005).
[CrossRef]

2004 (1)

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43, L722–L724 (2004).
[CrossRef]

2003 (1)

1992 (1)

Alam, S.-u.

Bamford, D. J.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Beach, R. J.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Bienfang, J. C.

Bigot, L.

Bjarklev, A.

Bouwmans, G.

Boyland, A. J.

Broeng, J.

Brown, A.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Calia, D. B.

Calia, D. Bonaccini

Chen, J.

Chen, M.

Codemard, C.

Cook, D. J.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Dawson, J. W.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Denman, C. A.

Dianov, E. M.

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44, 834–840 (2008).
[CrossRef]

Drobshoff, A. D.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Dronov, A. G.

Dvoyrin, V. V.

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44, 834–840 (2008).
[CrossRef]

Eguchi, N.

Fan, X.

Feng, Y.

Y. Yuan, L. Zhang, Y. Liu, X. Lü, G. Zhao, Y. Feng, and S. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Technol. Sci. 56, 125–128 (2013).
[CrossRef]

J. Wang, L. Zhang, J. Hu, L. Si, J. Chen, X. Gu, and Y. Feng, “Efficient linearly polarized ytterbium-doped fiber laser at 1120 nm,” Appl. Opt. 51, 3801–3803 (2012).
[CrossRef]

L. Zhang, J. Hu, J. Wang, and Y. Feng, “Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star,” Opt. Lett. 37, 4796–4798 (2012).

L. R. Taylor, Y. Feng, and D. B. Calia, “50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18, 8540–8555 (2010).
[CrossRef]

Y. Feng, L. R. Taylor, and D. B. Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17, 19021–19026 (2009).
[CrossRef]

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16, 10927–10932 (2008).
[CrossRef]

L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Multi-watt 589 nm Na D[sub 2]-line generation via frequency doubling of a Raman fiber amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43, L722–L724 (2004).
[CrossRef]

Ferin, A. A.

Gapontsev, V. P.

Georgiev, D.

Grime, B. W.

Gu, X.

Hackenberg, W.

L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Multi-watt 589 nm Na D[sub 2]-line generation via frequency doubling of a Raman fiber amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).

Hansen, K. P.

Hillman, P. D.

Hu, J.

Huang, S.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43, L722–L724 (2004).
[CrossRef]

Ibsen, M.

Imai, Y.

Kalita, M. P.

Katagai, T.

Kimble, H. J.

Kitamura, K.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98, 113103 (2005).
[CrossRef]

Kubota, S.

Kurimura, S.

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16, 11294–11299 (2008).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98, 113103 (2005).
[CrossRef]

Liu, Y.

Y. Yuan, L. Zhang, Y. Liu, X. Lü, G. Zhao, Y. Feng, and S. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Technol. Sci. 56, 125–128 (2013).
[CrossRef]

Louchev, O. A.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98, 113103 (2005).
[CrossRef]

Lü, X.

Y. Yuan, L. Zhang, Y. Liu, X. Lü, G. Zhao, Y. Feng, and S. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Technol. Sci. 56, 125–128 (2013).
[CrossRef]

Lyngsø, J. K.

Maruyama, H.

Mashinsky, V. M.

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44, 834–840 (2008).
[CrossRef]

Masuda, H.

Messerly, M. J.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Mio, N.

Moore, G. T.

Moriwaki, S.

Ohmae, N.

Olausson, C. B.

Ou, Z. Y.

Payne, S. A.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Pennington, D. M.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Pereira, S. F.

Polzik, E. S.

Popov, S. V.

Razdobreev, I.

Rulkov, A. B.

Sahu, J. K.

Saito, M.

Sharpe, S. J.

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Shirakawa, A.

Si, L.

Sudmeyer, T.

Suzuki, I.

Takeno, K.

Taylor, J. R.

Taylor, L.

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16, 10927–10932 (2008).
[CrossRef]

L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Multi-watt 589 nm Na D[sub 2]-line generation via frequency doubling of a Raman fiber amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).

Taylor, L. R.

Telle, J. M.

Tovstonog, S. V.

Ueda, K.

Ueda, K.-i.

M. Chen, A. Shirakawa, X. Fan, K.-i. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 20, 21044–21052 (2012).
[CrossRef]

A. Shirakawa, C. B. Olausson, M. Chen, K.-i. Ueda, J. K. Lyngsø, and J. Broeng, “Power-scalable photonic bandgap fiber sources with 167 W, 1178 nm and 14.5 W, 589 nm radiations,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper APDP6.

Vyatkin, M. Y.

Wang, J.

Yoo, S.

Yu, N. E.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98, 113103 (2005).
[CrossRef]

Yuan, Y.

Y. Yuan, L. Zhang, Y. Liu, X. Lü, G. Zhao, Y. Feng, and S. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Technol. Sci. 56, 125–128 (2013).
[CrossRef]

Zhang, L.

Zhao, G.

Y. Yuan, L. Zhang, Y. Liu, X. Lü, G. Zhao, Y. Feng, and S. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Technol. Sci. 56, 125–128 (2013).
[CrossRef]

Zhu, S.

Y. Yuan, L. Zhang, Y. Liu, X. Lü, G. Zhao, Y. Feng, and S. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Technol. Sci. 56, 125–128 (2013).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron. 44, 834–840 (2008).
[CrossRef]

J. Appl. Phys. (1)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98, 113103 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43, L722–L724 (2004).
[CrossRef]

Opt. Express (11)

M. P. Kalita, S.-u. Alam, C. Codemard, S. Yoo, A. J. Boyland, M. Ibsen, and J. K. Sahu, “Multi-watts narrow-linewidth all fiber Yb-doped laser operating at 1179 nm,” Opt. Express 18, 5920–5925 (2010).
[CrossRef]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express 17, 447–454 (2009).
[CrossRef]

C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 18, 16345–16352 (2010).
[CrossRef]

M. Chen, A. Shirakawa, X. Fan, K.-i. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 20, 21044–21052 (2012).
[CrossRef]

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178 nm CW bismuth-doped fiber laser with 6.4 W output for direct frequency doubling,” Opt. Express 15, 5473–5476 (2007).
[CrossRef]

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16, 10927–10932 (2008).
[CrossRef]

Y. Feng, L. R. Taylor, and D. B. Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17, 19021–19026 (2009).
[CrossRef]

L. R. Taylor, Y. Feng, and D. B. Calia, “50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18, 8540–8555 (2010).
[CrossRef]

T. Sudmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16, 1546–1551 (2008).
[CrossRef]

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Opt. Express 13, 6772–6776 (2005).
[CrossRef]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16, 11294–11299 (2008).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (2)

J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589 nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Multi-watt 589 nm Na D[sub 2]-line generation via frequency doubling of a Raman fiber amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).

Sci. China Technol. Sci. (1)

Y. Yuan, L. Zhang, Y. Liu, X. Lü, G. Zhao, Y. Feng, and S. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Technol. Sci. 56, 125–128 (2013).
[CrossRef]

Other (1)

A. Shirakawa, C. B. Olausson, M. Chen, K.-i. Ueda, J. K. Lyngsø, and J. Broeng, “Power-scalable photonic bandgap fiber sources with 167 W, 1178 nm and 14.5 W, 589 nm radiations,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper APDP6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental configuration.

Fig. 2.
Fig. 2.

Raman amplifier output power and backward-propagating light as a function of pump power.

Fig. 3.
Fig. 3.

(a) Output spectrum of the laser. (b) Self-heterodyne beat spectra of the 1178 nm laser (black) and the Lorentzian fit of the beat spectrum (red).

Fig. 4.
Fig. 4.

(a) Temperature tuning curves under approximately 1 W fundamental power through the crystals. (b) SH power (circle) and conversion efficiency (square) as a function of the fundamental power at a temperature of 168.8°C.

Fig. 5.
Fig. 5.

Spectrum of the 589 nm laser at the highest output power (7 W). Inset: far-field beam profile of the 589 nm laser.

Fig. 6.
Fig. 6.

SH power as a function of (a) fundamental power modulated at 500 Hz with a 5.0% duty cycle and (b) different repetition rate with a 5.0% duty cycle.

Fig. 7.
Fig. 7.

Fundamental light (dashed) and SHG light (solid) time-domain signals at repetition rate 0.5 Hz.

Metrics