Abstract

Holographic reflection gratings in a polyvinyl alcohol/acrylamide based photopolymer were stored using symmetrical geometry in three different thicknesses of the material. The advantage of symmetrical geometry is that exact expressions for transmittance, reflectance, and electric fields can be obtained analytically. Using these expressions, experimental data were fitted to obtain parameters such as refractive index modulation, spatial period of the grating, optical thickness or shrinkage of the material.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
    [CrossRef]
  2. D. Graham-Rowe, “The drive for holography,” Nat. Photonics 1, 197–200 (2007).
    [CrossRef]
  3. M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
    [CrossRef]
  4. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  5. E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
    [CrossRef]
  6. M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
    [CrossRef]
  7. C. Meka, R. Jallapuram, I. Naydenova, S. Martin, and V. Toal, “Development of a panchromatic acrylamide-based photopolymer for multicolor reflection holography,” Appl. Opt. 49, 1400–1405 (2010).
    [CrossRef]
  8. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B Chem. 139, 35–38 (2009).
    [CrossRef]
  9. R. Castagna, F. Vita, D. E. Lucchetta, L. Criante, and F. Simoni, “Superior-performance polymeric composite materials for high-density optical data storage,” Adv. Mater. 21, 589–592 (2009).
    [CrossRef]
  10. A. Murciano, S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, “Holographic reflection gratings in photopolymerizable solgel materials,” Opt. Lett. 31, 2317–2319 (2006).
    [CrossRef]
  11. R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
    [CrossRef]
  12. C. Neipp, I. Pascual, and A. Belendez, “Fixation-free rehalogenating bleached reflection holograms recorded on BB-640 plates,” Opt. Commun. 182, 107–114 (2000).
    [CrossRef]
  13. Y. Yonetani, K. Nitta, and O. Matoba, “Numerical evaluation of angular multiplexing in reflection-type holographic data storage in photopolymer with shrinkage,” Appl. Opt. 49, 694–700 (2010).
    [CrossRef]
  14. R. Kostuk, W. Maeda, C. Chen, I. Djordjevic, and B. Vasic, “Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications,” Appl. Opt. 44, 7581–7586 (2005).
    [CrossRef]
  15. L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A 11, 024011 (2009).
    [CrossRef]
  16. J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A 6, 132–136 (2004).
    [CrossRef]
  17. J. M. Kim, B. S. Choi, Y. S. Choi, H. I. Bjelkhagen, and N. J. Phillips, “Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements,” Appl. Opt. 41, 1522–1533 (2002).
    [CrossRef]
  18. L. Carretero, M. Perez-Molina, S. Blaya, R. F. Madrigal, P. Acebal, and A. Fimia, “Application of the fixed point theorem for the solution of the 1D wave equation: comparison with exact Mathieu solutions,” Opt. Express 13, 9078–9084(2005).
    [CrossRef]
  19. C. Neipp, J. Fraces, M. Perez-Molina, S. Blenda, and A. Belendez, “Transference matrix method for non slanted holographic reflection gratings,” Proc. SPIE 7717, 771706 (2010).
    [CrossRef]
  20. L. Carretero, M. Perez-Molina, P. Acebal, S. Blaya, and A. Fimia, “Matrix method for the study of wave propagation in one-dimensional general media,” Opt. Express 14, 11385–11391 (2006).
    [CrossRef]
  21. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
    [CrossRef]
  22. R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
    [CrossRef]
  23. S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281, 1480–1485 (2008).
    [CrossRef]
  24. M. Born and E. Wolf, Principles of Optics (Macmillan, 1964).
  25. M. Perez-Molina and L. Carretero, “Polynomial fixed-point algorithm applied to the electromagnetic analysis of one-dimensional continuous structures,” J. Opt. Soc. Am. B 24, 1354–1364 (2007).
    [CrossRef]
  26. I. S. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products (Academic, 1994).
  27. A. Belendez, T. Belendez, C. Neipp, and I. Pascual, “Determination of the refractive index and thickness of holographic silver halide materials by use of polarized reflectances,” Appl. Opt. 41, 6802–6808 (2002).
    [CrossRef]
  28. L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
    [CrossRef]

2010 (7)

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

C. Neipp, J. Fraces, M. Perez-Molina, S. Blenda, and A. Belendez, “Transference matrix method for non slanted holographic reflection gratings,” Proc. SPIE 7717, 771706 (2010).
[CrossRef]

Y. Yonetani, K. Nitta, and O. Matoba, “Numerical evaluation of angular multiplexing in reflection-type holographic data storage in photopolymer with shrinkage,” Appl. Opt. 49, 694–700 (2010).
[CrossRef]

C. Meka, R. Jallapuram, I. Naydenova, S. Martin, and V. Toal, “Development of a panchromatic acrylamide-based photopolymer for multicolor reflection holography,” Appl. Opt. 49, 1400–1405 (2010).
[CrossRef]

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
[CrossRef]

2009 (4)

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
[CrossRef]

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B Chem. 139, 35–38 (2009).
[CrossRef]

R. Castagna, F. Vita, D. E. Lucchetta, L. Criante, and F. Simoni, “Superior-performance polymeric composite materials for high-density optical data storage,” Adv. Mater. 21, 589–592 (2009).
[CrossRef]

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A 11, 024011 (2009).
[CrossRef]

2008 (2)

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281, 1480–1485 (2008).
[CrossRef]

2007 (2)

2006 (3)

2005 (2)

2004 (1)

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A 6, 132–136 (2004).
[CrossRef]

2003 (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

2002 (2)

2000 (1)

C. Neipp, I. Pascual, and A. Belendez, “Fixation-free rehalogenating bleached reflection holograms recorded on BB-640 plates,” Opt. Commun. 182, 107–114 (2000).
[CrossRef]

Acebal, P.

Ayres, M.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Beev, K.

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Belendez, A.

C. Neipp, J. Fraces, M. Perez-Molina, S. Blenda, and A. Belendez, “Transference matrix method for non slanted holographic reflection gratings,” Proc. SPIE 7717, 771706 (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
[CrossRef]

A. Belendez, T. Belendez, C. Neipp, and I. Pascual, “Determination of the refractive index and thickness of holographic silver halide materials by use of polarized reflectances,” Appl. Opt. 41, 6802–6808 (2002).
[CrossRef]

C. Neipp, I. Pascual, and A. Belendez, “Fixation-free rehalogenating bleached reflection holograms recorded on BB-640 plates,” Opt. Commun. 182, 107–114 (2000).
[CrossRef]

Belendez, T.

Beléndez, A.

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281, 1480–1485 (2008).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Bjelkhagen, H. I.

Blaya, S.

Blenda, S.

C. Neipp, J. Fraces, M. Perez-Molina, S. Blenda, and A. Belendez, “Transference matrix method for non slanted holographic reflection gratings,” Proc. SPIE 7717, 771706 (2010).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Macmillan, 1964).

Bruder, F.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Carretero, L.

Castagna, R.

R. Castagna, F. Vita, D. E. Lucchetta, L. Criante, and F. Simoni, “Superior-performance polymeric composite materials for high-density optical data storage,” Adv. Mater. 21, 589–592 (2009).
[CrossRef]

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A 11, 024011 (2009).
[CrossRef]

Chen, C.

Chen, L.

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A 6, 132–136 (2004).
[CrossRef]

Choi, B. S.

Choi, Y. S.

Coza, J.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Criante, L.

R. Castagna, F. Vita, D. E. Lucchetta, L. Criante, and F. Simoni, “Superior-performance polymeric composite materials for high-density optical data storage,” Adv. Mater. 21, 589–592 (2009).
[CrossRef]

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A 11, 024011 (2009).
[CrossRef]

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Curtis, K.

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
[CrossRef]

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Dhar, L.

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
[CrossRef]

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Djordjevic, I.

Dong, G.

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A 6, 132–136 (2004).
[CrossRef]

Ensher, J.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Facke, T.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Fäcke, T.

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
[CrossRef]

Fernandez, E.

Fernández, E.

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281, 1480–1485 (2008).
[CrossRef]

Fimia, A.

Fraces, J.

C. Neipp, J. Fraces, M. Perez-Molina, S. Blenda, and A. Belendez, “Transference matrix method for non slanted holographic reflection gratings,” Proc. SPIE 7717, 771706 (2010).
[CrossRef]

Fuentes, R.

Gallego, S.

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281, 1480–1485 (2008).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Garcia, C.

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
[CrossRef]

García, C.

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Gradshteyn, I. S.

I. S. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products (Academic, 1994).

Graham-Rowe, D.

D. Graham-Rowe, “The drive for holography,” Nat. Photonics 1, 197–200 (2007).
[CrossRef]

Guo, X.

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A 6, 132–136 (2004).
[CrossRef]

Harris, R.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Hill, A.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Honel, D.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Jallapuram, R.

C. Meka, R. Jallapuram, I. Naydenova, S. Martin, and V. Toal, “Development of a panchromatic acrylamide-based photopolymer for multicolor reflection holography,” Appl. Opt. 49, 1400–1405 (2010).
[CrossRef]

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B Chem. 139, 35–38 (2009).
[CrossRef]

Jurbergs, D.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Kim, J. M.

Kondo, H.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Kostuk, R.

Li, J.

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A 6, 132–136 (2004).
[CrossRef]

Lucchetta, D. E.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A 11, 024011 (2009).
[CrossRef]

R. Castagna, F. Vita, D. E. Lucchetta, L. Criante, and F. Simoni, “Superior-performance polymeric composite materials for high-density optical data storage,” Adv. Mater. 21, 589–592 (2009).
[CrossRef]

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Madrigal, R. F.

Maeda, W.

Marquez, A.

Martin, S.

C. Meka, R. Jallapuram, I. Naydenova, S. Martin, and V. Toal, “Development of a panchromatic acrylamide-based photopolymer for multicolor reflection holography,” Appl. Opt. 49, 1400–1405 (2010).
[CrossRef]

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B Chem. 139, 35–38 (2009).
[CrossRef]

Matoba, O.

Matsuo, H.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Meka, C.

Miyata, T.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Mori, N.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Murciano, A.

Naydenova, I.

C. Meka, R. Jallapuram, I. Naydenova, S. Martin, and V. Toal, “Development of a panchromatic acrylamide-based photopolymer for multicolor reflection holography,” Appl. Opt. 49, 1400–1405 (2010).
[CrossRef]

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B Chem. 139, 35–38 (2009).
[CrossRef]

Neipp, C.

C. Neipp, J. Fraces, M. Perez-Molina, S. Blenda, and A. Belendez, “Transference matrix method for non slanted holographic reflection gratings,” Proc. SPIE 7717, 771706 (2010).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281, 1480–1485 (2008).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

A. Belendez, T. Belendez, C. Neipp, and I. Pascual, “Determination of the refractive index and thickness of holographic silver halide materials by use of polarized reflectances,” Appl. Opt. 41, 6802–6808 (2002).
[CrossRef]

C. Neipp, I. Pascual, and A. Belendez, “Fixation-free rehalogenating bleached reflection holograms recorded on BB-640 plates,” Opt. Commun. 182, 107–114 (2000).
[CrossRef]

Nitta, K.

Okauchi, S.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Omori, M.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Ortuño, M.

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281, 1480–1485 (2008).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Pascual, I.

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281, 1480–1485 (2008).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

A. Belendez, T. Belendez, C. Neipp, and I. Pascual, “Determination of the refractive index and thickness of holographic silver halide materials by use of polarized reflectances,” Appl. Opt. 41, 6802–6808 (2002).
[CrossRef]

C. Neipp, I. Pascual, and A. Belendez, “Fixation-free rehalogenating bleached reflection holograms recorded on BB-640 plates,” Opt. Commun. 182, 107–114 (2000).
[CrossRef]

Perez-Molina, M.

Phillips, N. J.

Rolle, T.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Ryzhik, I.

I. S. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products (Academic, 1994).

Sasamuro, T.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Simoni, F.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A 11, 024011 (2009).
[CrossRef]

R. Castagna, F. Vita, D. E. Lucchetta, L. Criante, and F. Simoni, “Superior-performance polymeric composite materials for high-density optical data storage,” Adv. Mater. 21, 589–592 (2009).
[CrossRef]

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Toal, V.

C. Meka, R. Jallapuram, I. Naydenova, S. Martin, and V. Toal, “Development of a panchromatic acrylamide-based photopolymer for multicolor reflection holography,” Appl. Opt. 49, 1400–1405 (2010).
[CrossRef]

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B Chem. 139, 35–38 (2009).
[CrossRef]

Vasic, B.

Vita, F.

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A 11, 024011 (2009).
[CrossRef]

R. Castagna, F. Vita, D. E. Lucchetta, L. Criante, and F. Simoni, “Superior-performance polymeric composite materials for high-density optical data storage,” Adv. Mater. 21, 589–592 (2009).
[CrossRef]

Wegner, A.

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

Weiser, M.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Wilson, W.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Macmillan, 1964).

Yonetani, Y.

Zhu, J.

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A 6, 132–136 (2004).
[CrossRef]

Adv. Mater. (1)

R. Castagna, F. Vita, D. E. Lucchetta, L. Criante, and F. Simoni, “Superior-performance polymeric composite materials for high-density optical data storage,” Adv. Mater. 21, 589–592 (2009).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A (2)

L. Criante, R. Castagna, F. Vita, D. E. Lucchetta, and F. Simoni, “Nanocomposite polymeric materials for high density optical storage,” J. Opt. A 11, 024011 (2009).
[CrossRef]

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A 6, 132–136 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Macromol. Symp. (1)

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Nat. Photonics (2)

L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
[CrossRef]

D. Graham-Rowe, “The drive for holography,” Nat. Photonics 1, 197–200 (2007).
[CrossRef]

Opt. Commun. (2)

C. Neipp, I. Pascual, and A. Belendez, “Fixation-free rehalogenating bleached reflection holograms recorded on BB-640 plates,” Opt. Commun. 182, 107–114 (2000).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281, 1480–1485 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (4)

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

C. Neipp, J. Fraces, M. Perez-Molina, S. Blenda, and A. Belendez, “Transference matrix method for non slanted holographic reflection gratings,” Proc. SPIE 7717, 771706 (2010).
[CrossRef]

M. Omori, H. Kondo, T. Miyata, N. Mori, H. Matsuo, T. Sasamuro, S. Okauchi, J. Ensher, R. Harris, A. Wegner, and J. Coza, “Enhancement of a tunable blue laser for holographic data storage,” Proc. SPIE 7730, 77300T (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

Sens. Actuators B Chem. (1)

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B Chem. 139, 35–38 (2009).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics (Macmillan, 1964).

I. S. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products (Academic, 1994).

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Supplementary Material (1)

» Media 1: AVI (2414 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of a holographic reflection grating with symmetric geometry. (a) Recording stage with two beams at the same incidence angle. (b) Reconstruction stage.

Fig. 2.
Fig. 2.

Movie of the time-domain electric field in the schematic diagram in Fig. 1 computed between the planes z=50μm and z=50μm, which separate the computational region from the PMLs and are indicated by vertical red dotted lines (Media 1). (a) Incident field propagation in a homogeneous medium (ε0=2.292) obtained via FDTD. The vertical black continuous line indicates the plane z=0. (b) Electric field propagation obtained via FDTD for the reflection grating defined by Eqs. (8) and (14). The vertical black continuous lines indicate the grating boundaries at z=0 and z=20μm. (c) Electric field propagation for the same reflection grating obtained through the inverse Fourier transform of the electric field given by Eqs. (5) and (6). In this case, the electric fields are not considered outside the computational region, i.e., inside the PML regions, where they are plotted as null values (red color).

Fig. 3.
Fig. 3.

Transmittance of the unexposed photopolymer plate.

Fig. 4.
Fig. 4.

Experimental setup: BS, beam splitter; Mi, mirror; Li, lens; Di, diaphragm; SFi, microscope objective lens and pinhole.

Fig. 5.
Fig. 5.

Refractive index modulation (solid circles) and optical thickness (empty squares) versus exposure for a material with a sample thickness of (a) 40, (b) 70, and (c) 110 μm.

Fig. 6.
Fig. 6.

Circles represent the experimental transmittance and the continuous line, the theoretical fit of the transmittance for a holographic reflection grating with a sample thickness of (a) 40, (b) 70, and (c) 110 μm.

Tables (1)

Tables Icon

Table 1. Concentrations of the Photopolymer Composition

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

θi=θrn1·sinθi=n3·sinθt.
E(z)+k02ε(z)E(z)=0E(0)=(1+r)Ei,E(L)=t·EiE(0)=ik0n1(1r)Ei,E(L)=ik0n3tEi,
Ep(z)+k02ε(Lz)Ep(z)=0Ep(0)=1,Ep(0)=ik0n3.
r=ik0n1Ep(L)+Ep(L)ik0n1Ep(L)Ep(L),t=2ik0n1ik0n1Ep(L)Ep(L),
E(z)=tEiEp(Lz),0zL,
E(z)={Eiexp(ik0n1z)+rEiexp(ik0n1z)ifz<0t·Eiexp(ik0n3(zL))ifz>L.
R=|r|2,T=Re[n3]Re[n1]|t|2,
ε(z)=ε0+εmcos(2πzΛ),0zL,
Ep(z)+k02(ε0+εmcos(2π(Lz)Λ))Ep(z)=0.
Ep(z)=C1mc(a,q,π(Lz)Λ)+C2ms(a,q,π(Lz)Λ),
a=4ε0Λ2λ2,q=2εmΛ2λ2,
C1=π·ms(a,q,πLΛ)ik0n3Λ·ms(a,q,πLΛ)π·(mc(a,q,πLΛ)·ms(a,q,πLΛ)ms(a,q,πLΛ)·mc(a,q,πLΛ)),
C2=ik0n3Λ·mc(a,q,πLΛ)π·mc(a,q,πLΛ)π·(mc(a,q,πLΛ)·ms(a,q,πLΛ)ms(a,q,πLΛ)·mc(a,q,πLΛ)),
T(λ,Λ,L,ε0,εm)=4k02n02|ik0n0Ep(L)Ep(L)|2,
ε0=2.292,εm=0.07,Λ=0.1965μm,L=20μm,n1=n3=ε0=1.514.
Λ=λ2n02sin2θ.
Sopt=λthλexpλth,

Metrics