Abstract

Free-form surfaces (FFSs) provide more freedom to design an optical system with fewer elements and hence to reduce the size and weight of the overall system than rotationally symmetric optical surfaces. In this paper, an optical see-through (OST), head-mounted display (HMD) consisting of a free-form, wedge-shaped prism and a free-form lens is designed and fabricated through the injection molding method. The free-form prism for the projection system is designed with a field-of-view (FOV) of 36°; the free-form lens is cemented to the prism for the see-through system to achieve a FOV of 50°. The free-form prism and lens are expanded at the edge area during the design stage in order to reduce the effects of surface deformation in the working area in molding fabrication process and to improve ergonomic fit with the head of a user. The tolerance analyzes considering the mold design for the free-form optical systems are carried out using the Monte Carlo method. The FFS optical elements are successfully fabricated and the system performance is carefully examined. The results indicate that the performance of the OST-HMD is sufficient for both entertainment and scientific applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Azuma, “A survey of augmented reality,” Presence Teleoper. Virtual Environ. 6, 355–385 (1997).
  2. D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Real. 9, 1–20 (2010).
  3. N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
    [CrossRef]
  4. H. Hua, L. D. Brown, and C. Gao, “Scape: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graph. Appl. 24, 66–75(2004).
    [CrossRef]
  5. M. Bajura, H. Fuchs, and R. Ohbuchi, “Merging virtual objects with the real world: seeing ultrasound imagery within the patient,” in Proceedings of SIGGRAPH ’92 (ACM, 1992), pp. 203–210.
  6. J. P. Rolland, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence Teleoper. Virtual Environ. 14, 528–549 (2005).
    [CrossRef]
  7. H. Hua, L. D. Brown, and R. Zhang, “Head-mounted projection display technology and applications,” in Handbook of Augmented Reality, Borko Furht, ed. (Springer, 2011), pp. 123–155.
  8. A. Sisodia, M. Bayer, P. T. Smith, B. Nash, J. Little, W. Cassarly, and A. Gupta, “Advanced helmet mounted display (AHMD),” Proc. SPIE 6557, 65570N (2007).
    [CrossRef]
  9. J. P. Rolland, A. Yoshida, L. D. Davis, and J. H. Reif, “High-resolution inset head-mounted display,” Appl. Opt. 37, 4183–4193 (1998).
    [CrossRef]
  10. Z. Zheng, X. Liu, H. Li, and L. Xu, “Design and fabrication of an off-axis see-through head-mounted display with an x-ypolynomial surface,” Appl. Opt. 49, 3661–3668 (2010).
    [CrossRef]
  11. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Display Technol. 2, 199–216 (2006).
    [CrossRef]
  12. Y. Amitai and A. A. Friesem, “Design of holographic optical elements by using recursive techniques,” J. Opt. Soc. Am. A 5, 702–712 (1988).
    [CrossRef]
  13. Y. Amitai and A. A. Friesem, “Combining low aberrations and high diffraction efficiency in holographic optical elements,” Opt. Lett. 13, 883–885 (1988).
    [CrossRef]
  14. Lumus, “ http://www.lumus-optical.com ”.
  15. Optinvent, “ http://www.optinvent.com ”.
  16. H. Mukawa, K. Akutsu, I. Matsumura, and S. Nakano, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
    [CrossRef]
  17. Vuzix, “ http://www.vuzix.com ”.
  18. H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium Extended Abstracts, Vol. 21, pp. 53–56 (1995).
  19. H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
    [CrossRef]
  20. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48, 2655–2668 (2009).
    [CrossRef]
  21. D. Cheng, Y. Wang, H. Hua, and J. Sasian, “Design of a wide-angle, lightweight head-mounted display using free-form optics tiling,” Opt. Lett. 36, 2098–2100 (2011).
    [CrossRef]
  22. U. S. Precision Lens, Inc., The Handbook of Plastic Optics: A User’s Guide with Emphasis on Injection-Molded Optics (U. S. Precision Lens, 1983).
  23. S. Bäumer, ed. Handbook of Plastic Optics (Wiley-VCH, 2005).
  24. Mitsui Chemicals America, Inc., “ http://www.mitsuichemicals.com/apel.htm ”.
  25. Wishsino Plastic Injection Molding Company, “ http://www.injection-molding-manufacturers.com/News-152.html ”.
  26. H. Jeong, H. Yoo, S. Lee, and H. Oh, “Low-profile optic design for mobile camera using dual freeform reflective lenses,” Proc. SPIE 6288, 628808 (2006).
    [CrossRef]
  27. O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, “Optimal local shape description for rotationally nonsymmetric optical surface design and analysis,” Opt. Express 16, 1583–1589 (2008).
    [CrossRef]
  28. G. D. Wassermann and E. Wolf, “On the theory of aplanatic aspheric systems,” Proc. Phys. Soc. B 62, 2–8 (1949).
    [CrossRef]
  29. J. C. Minano and P. Benítez, “SMS design method 3D: calculating multiple free form surfaces from the optical prescription,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper TuL1.
  30. J. C. Minano, P. Benitez, W. Lin, J. Infante, and F. Muez, “An application of the SMS method for imaging designs,” Opt. Express 17, 24036–24044 (2009).
    [CrossRef]
  31. D. Cheng, Y. Wang, and H. Hua, “Automatic image performance balancing in lens optimization,” Opt. Express 18, 11574–11588 (2010).
    [CrossRef]
  32. Objet Geometries Ltd., “ http://www.objet.com/3D-Printer/Objet_Eden_Family ”.

2011 (2)

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

D. Cheng, Y. Wang, H. Hua, and J. Sasian, “Design of a wide-angle, lightweight head-mounted display using free-form optics tiling,” Opt. Lett. 36, 2098–2100 (2011).
[CrossRef]

2010 (3)

2009 (2)

2008 (2)

H. Mukawa, K. Akutsu, I. Matsumura, and S. Nakano, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, “Optimal local shape description for rotationally nonsymmetric optical surface design and analysis,” Opt. Express 16, 1583–1589 (2008).
[CrossRef]

2007 (1)

A. Sisodia, M. Bayer, P. T. Smith, B. Nash, J. Little, W. Cassarly, and A. Gupta, “Advanced helmet mounted display (AHMD),” Proc. SPIE 6557, 65570N (2007).
[CrossRef]

2006 (2)

H. Jeong, H. Yoo, S. Lee, and H. Oh, “Low-profile optic design for mobile camera using dual freeform reflective lenses,” Proc. SPIE 6288, 628808 (2006).
[CrossRef]

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Display Technol. 2, 199–216 (2006).
[CrossRef]

2005 (1)

J. P. Rolland, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence Teleoper. Virtual Environ. 14, 528–549 (2005).
[CrossRef]

2004 (1)

H. Hua, L. D. Brown, and C. Gao, “Scape: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graph. Appl. 24, 66–75(2004).
[CrossRef]

1998 (1)

1997 (1)

R. T. Azuma, “A survey of augmented reality,” Presence Teleoper. Virtual Environ. 6, 355–385 (1997).

1996 (1)

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[CrossRef]

1988 (2)

1949 (1)

G. D. Wassermann and E. Wolf, “On the theory of aplanatic aspheric systems,” Proc. Phys. Soc. B 62, 2–8 (1949).
[CrossRef]

Akiyama, T.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[CrossRef]

H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium Extended Abstracts, Vol. 21, pp. 53–56 (1995).

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, and S. Nakano, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Amitai, Y.

Azuma, R. T.

R. T. Azuma, “A survey of augmented reality,” Presence Teleoper. Virtual Environ. 6, 355–385 (1997).

Bajura, M.

M. Bajura, H. Fuchs, and R. Ohbuchi, “Merging virtual objects with the real world: seeing ultrasound imagery within the patient,” in Proceedings of SIGGRAPH ’92 (ACM, 1992), pp. 203–210.

Bayer, M.

A. Sisodia, M. Bayer, P. T. Smith, B. Nash, J. Little, W. Cassarly, and A. Gupta, “Advanced helmet mounted display (AHMD),” Proc. SPIE 6557, 65570N (2007).
[CrossRef]

Benitez, P.

Benítez, P.

J. C. Minano and P. Benítez, “SMS design method 3D: calculating multiple free form surfaces from the optical prescription,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper TuL1.

Brown, L. D.

H. Hua, L. D. Brown, and C. Gao, “Scape: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graph. Appl. 24, 66–75(2004).
[CrossRef]

H. Hua, L. D. Brown, and R. Zhang, “Head-mounted projection display technology and applications,” in Handbook of Augmented Reality, Borko Furht, ed. (Springer, 2011), pp. 123–155.

Cakmakci, O.

Cassarly, W.

A. Sisodia, M. Bayer, P. T. Smith, B. Nash, J. Little, W. Cassarly, and A. Gupta, “Advanced helmet mounted display (AHMD),” Proc. SPIE 6557, 65570N (2007).
[CrossRef]

Cheng, D.

Davis, L. D.

Dodgson, N. A.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

Favalora, G. E.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

Foroosh, H.

Friesem, A. A.

Fuchs, H.

M. Bajura, H. Fuchs, and R. Ohbuchi, “Merging virtual objects with the real world: seeing ultrasound imagery within the patient,” in Proceedings of SIGGRAPH ’92 (ACM, 1992), pp. 203–210.

Gao, C.

H. Hua, L. D. Brown, and C. Gao, “Scape: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graph. Appl. 24, 66–75(2004).
[CrossRef]

Gupta, A.

A. Sisodia, M. Bayer, P. T. Smith, B. Nash, J. Little, W. Cassarly, and A. Gupta, “Advanced helmet mounted display (AHMD),” Proc. SPIE 6557, 65570N (2007).
[CrossRef]

Holliman, N. S.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

Hoshi, H.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[CrossRef]

Hua, H.

Infante, J.

Jeong, H.

H. Jeong, H. Yoo, S. Lee, and H. Oh, “Low-profile optic design for mobile camera using dual freeform reflective lenses,” Proc. SPIE 6288, 628808 (2006).
[CrossRef]

Lee, S.

H. Jeong, H. Yoo, S. Lee, and H. Oh, “Low-profile optic design for mobile camera using dual freeform reflective lenses,” Proc. SPIE 6288, 628808 (2006).
[CrossRef]

Li, H.

Lin, W.

Little, J.

A. Sisodia, M. Bayer, P. T. Smith, B. Nash, J. Little, W. Cassarly, and A. Gupta, “Advanced helmet mounted display (AHMD),” Proc. SPIE 6557, 65570N (2007).
[CrossRef]

Liu, X.

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, and S. Nakano, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Minano, J. C.

J. C. Minano, P. Benitez, W. Lin, J. Infante, and F. Muez, “An application of the SMS method for imaging designs,” Opt. Express 17, 24036–24044 (2009).
[CrossRef]

J. C. Minano and P. Benítez, “SMS design method 3D: calculating multiple free form surfaces from the optical prescription,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper TuL1.

Moore, B.

Morishima, H.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[CrossRef]

H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium Extended Abstracts, Vol. 21, pp. 53–56 (1995).

Muez, F.

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, and S. Nakano, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, and S. Nakano, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Nanba, N.

H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium Extended Abstracts, Vol. 21, pp. 53–56 (1995).

Nash, B.

A. Sisodia, M. Bayer, P. T. Smith, B. Nash, J. Little, W. Cassarly, and A. Gupta, “Advanced helmet mounted display (AHMD),” Proc. SPIE 6557, 65570N (2007).
[CrossRef]

Oh, H.

H. Jeong, H. Yoo, S. Lee, and H. Oh, “Low-profile optic design for mobile camera using dual freeform reflective lenses,” Proc. SPIE 6288, 628808 (2006).
[CrossRef]

Ohbuchi, R.

M. Bajura, H. Fuchs, and R. Ohbuchi, “Merging virtual objects with the real world: seeing ultrasound imagery within the patient,” in Proceedings of SIGGRAPH ’92 (ACM, 1992), pp. 203–210.

Okuyama, A.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[CrossRef]

Pockett, L.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

Poelman, R.

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Real. 9, 1–20 (2010).

Reif, J. H.

Rolland, J.

Rolland, J. P.

Sasian, J.

Sisodia, A.

A. Sisodia, M. Bayer, P. T. Smith, B. Nash, J. Little, W. Cassarly, and A. Gupta, “Advanced helmet mounted display (AHMD),” Proc. SPIE 6557, 65570N (2007).
[CrossRef]

Smith, P. T.

A. Sisodia, M. Bayer, P. T. Smith, B. Nash, J. Little, W. Cassarly, and A. Gupta, “Advanced helmet mounted display (AHMD),” Proc. SPIE 6557, 65570N (2007).
[CrossRef]

Talha, M. M.

Tanaka, T.

H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium Extended Abstracts, Vol. 21, pp. 53–56 (1995).

Taniguchi, N.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[CrossRef]

van Krevelen, D. W. F.

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Real. 9, 1–20 (2010).

Wang, Y.

Wassermann, G. D.

G. D. Wassermann and E. Wolf, “On the theory of aplanatic aspheric systems,” Proc. Phys. Soc. B 62, 2–8 (1949).
[CrossRef]

Wolf, E.

G. D. Wassermann and E. Wolf, “On the theory of aplanatic aspheric systems,” Proc. Phys. Soc. B 62, 2–8 (1949).
[CrossRef]

Xu, L.

Yamazaki, S.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[CrossRef]

Yoo, H.

H. Jeong, H. Yoo, S. Lee, and H. Oh, “Low-profile optic design for mobile camera using dual freeform reflective lenses,” Proc. SPIE 6288, 628808 (2006).
[CrossRef]

Yoshida, A.

Zhang, R.

H. Hua, L. D. Brown, and R. Zhang, “Head-mounted projection display technology and applications,” in Handbook of Augmented Reality, Borko Furht, ed. (Springer, 2011), pp. 123–155.

Zheng, Z.

Appl. Opt. (3)

IEEE Comput. Graph. Appl. (1)

H. Hua, L. D. Brown, and C. Gao, “Scape: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graph. Appl. 24, 66–75(2004).
[CrossRef]

IEEE Trans. Broadcast. (1)

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

Int. J. Virtual Real. (1)

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Real. 9, 1–20 (2010).

J. Display Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lett. (2)

Presence Teleoper. Virtual Environ. (2)

R. T. Azuma, “A survey of augmented reality,” Presence Teleoper. Virtual Environ. 6, 355–385 (1997).

J. P. Rolland, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence Teleoper. Virtual Environ. 14, 528–549 (2005).
[CrossRef]

Proc. Phys. Soc. B (1)

G. D. Wassermann and E. Wolf, “On the theory of aplanatic aspheric systems,” Proc. Phys. Soc. B 62, 2–8 (1949).
[CrossRef]

Proc. SPIE (3)

A. Sisodia, M. Bayer, P. T. Smith, B. Nash, J. Little, W. Cassarly, and A. Gupta, “Advanced helmet mounted display (AHMD),” Proc. SPIE 6557, 65570N (2007).
[CrossRef]

H. Jeong, H. Yoo, S. Lee, and H. Oh, “Low-profile optic design for mobile camera using dual freeform reflective lenses,” Proc. SPIE 6288, 628808 (2006).
[CrossRef]

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” Proc. SPIE 2653, 234–242 (1996).
[CrossRef]

SID Int. Symp. Dig. Tech. Pap. (1)

H. Mukawa, K. Akutsu, I. Matsumura, and S. Nakano, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Other (12)

Vuzix, “ http://www.vuzix.com ”.

H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium Extended Abstracts, Vol. 21, pp. 53–56 (1995).

U. S. Precision Lens, Inc., The Handbook of Plastic Optics: A User’s Guide with Emphasis on Injection-Molded Optics (U. S. Precision Lens, 1983).

S. Bäumer, ed. Handbook of Plastic Optics (Wiley-VCH, 2005).

Mitsui Chemicals America, Inc., “ http://www.mitsuichemicals.com/apel.htm ”.

Wishsino Plastic Injection Molding Company, “ http://www.injection-molding-manufacturers.com/News-152.html ”.

Lumus, “ http://www.lumus-optical.com ”.

Optinvent, “ http://www.optinvent.com ”.

H. Hua, L. D. Brown, and R. Zhang, “Head-mounted projection display technology and applications,” in Handbook of Augmented Reality, Borko Furht, ed. (Springer, 2011), pp. 123–155.

M. Bajura, H. Fuchs, and R. Ohbuchi, “Merging virtual objects with the real world: seeing ultrasound imagery within the patient,” in Proceedings of SIGGRAPH ’92 (ACM, 1992), pp. 203–210.

J. C. Minano and P. Benítez, “SMS design method 3D: calculating multiple free form surfaces from the optical prescription,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper TuL1.

Objet Geometries Ltd., “ http://www.objet.com/3D-Printer/Objet_Eden_Family ”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

2-D optical layout of the designed FFS OST-HMD using a free-form prism cemented with a free-form lens.

Fig. 2.
Fig. 2.

MTF curve of system: (a) MTF curve of projection system (33lps/mm), (b) MTF curve of see-through system (33lps/mm), (c) MTF field plot of projection system (16lps/mm), and (d) MTF field plot of see-through system (16lps/mm).

Fig. 3.
Fig. 3.

Top view of the schematic design with extended zones (S4 is not shown).

Fig. 4.
Fig. 4.

Local curvatures of the extended surfaces: (a) sagittal local curvatures, (b) tangential local curvatures of surface 2, (c) local curvatures of surface 3 along X axis, and (d) local curvatures of surface 3 along Y axis.

Fig. 5.
Fig. 5.

Optimized results of the distortion: (a) distortion grid of the projection system and (b) distortion grid of the see-through system.

Fig. 6.
Fig. 6.

Flowchart of tolerance analyzes.

Fig. 7.
Fig. 7.

Sampled FOVs for tolerance analysis.

Fig. 8.
Fig. 8.

Changes of MTF values of different fields with different tolerance types (INI shows the initial design values for different fields).

Fig. 9.
Fig. 9.

Probable change of MTF value with different cumulative probabilities for roughness tolerance analysis.

Fig. 10.
Fig. 10.

Probable change of MTF value with different cumulative probabilities for overall tolerance analysis using default tolerances listed in Table 2.

Fig. 11.
Fig. 11.

Probable change of MTF value with different cumulative probabilities for overall tolerance analysis using adjusted tolerance values listed in Table 4.

Fig. 12.
Fig. 12.

Adjustment of the injection molding.

Fig. 13.
Fig. 13.

Probable change of MTF value with different cumulative probabilities for tolerance analysis of mold adjustment.

Fig. 14.
Fig. 14.

Inserts design of the FFS elements for alignment and cementing: (a) FFS prism with slots and pins and (b) FFS lens with bosses and pins.

Fig. 15.
Fig. 15.

Injection molds of the FFS prism and lens: (a) removable mold and (b) FFS elements.

Fig. 16.
Fig. 16.

Prototype of the augmented reality OST-HMD.

Fig. 17.
Fig. 17.

Results of imaging experiment: (a) image of the see-through path and (b) image of the projection path (the brightness difference between the micro-display and computer monitor display are quite obvious, thus the photos have different intensity).

Fig. 18.
Fig. 18.

Augmented reality experiment: (a) experimental equipment and (b) experimental result.

Fig. 19.
Fig. 19.

Small batch production of FFS prisms.

Tables (4)

Tables Icon

Table 1. Design Parameters of the FFS Prism

Tables Icon

Table 2. Types of Tolerances

Tables Icon

Table 3. Normalized Fields Definition of the System

Tables Icon

Table 4. Tolerance Items

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

0.4<|Rx/Ry|<2.5,
DLY=DMZ×sin(αi)DLZ=DMZ×cos(αi).

Metrics