Abstract

We demonstrate an imaging technique implementing vertical cavity lasers with extremely low transient times for a greatly simplified realization of a multiexposure laser speckle contrast imaging system. Data from multiexposure laser speckle imaging was observed to more closely agree with absolute velocity measurements using time of flight technique, when compared to long-exposure laser speckle imaging. Furthermore, additional depth information of the vasculature morphology was inferred by accounting for the change in the static scattering from tissue above vessels with respect to the total scattering from blood flow and tissue.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008).
    [CrossRef]
  2. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34, 1480–1482 (2009).
    [CrossRef]
  3. A. Dunn, A. Devor, H. Bolay, M. Andermann, M. Moskowitz, A. Dale, and D. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
    [CrossRef]
  4. H. Levy, D. Ringuette, and O. Levi, “Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow,” Biomed. Opt. Express 3, 777–791 (2012).
    [CrossRef]
  5. A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
    [CrossRef]
  6. F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
    [CrossRef]
  7. K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).
    [CrossRef]
  8. P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
    [CrossRef]
  9. J. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).
    [CrossRef]
  10. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
    [CrossRef]
  11. D. Boas and A. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
    [CrossRef]
  12. J. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16, 3197–3203 (2008).
    [CrossRef]
  13. A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
    [CrossRef]
  14. A. Parthasarathy, S. Kazmi, and A. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with multi-exposure speckle imaging,” Biomed. Opt. Express 1, 246–259 (2010).
    [CrossRef]
  15. M. Bouchard, B. Chen, S. Burgess, and E. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17, 15670–15678 (2009).
    [CrossRef]
  16. R. Michalzik and K. Ebeling, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2002) p. 53.
  17. Y. Atchia, H. Levy, and O. Levi, “Deviations in long exposure laser speckle contrast imaging: accounting for static scatterers,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology (Optical Society of America, 2012).
  18. D. Duncan, S. Kirkpatrick, and J. Gladish, “What is the proper statistical model for laser speckle flowmetry,” Proc. SPIE 6855, 685502 (2008).
    [CrossRef]
  19. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2011) p. 552.
  20. E. Munro, H. Levy, D. Ringuette, T. O’Sullivan, and O. Levi, “Multimodality optical neural imaging using coherence control of VCSELs,” Opt. Express 19, 10747–10761 (2011).
    [CrossRef]
  21. O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16, 016009 (2011).
    [CrossRef]

2012 (1)

2011 (4)

E. Munro, H. Levy, D. Ringuette, T. O’Sullivan, and O. Levi, “Multimodality optical neural imaging using coherence control of VCSELs,” Opt. Express 19, 10747–10761 (2011).
[CrossRef]

K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).
[CrossRef]

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[CrossRef]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16, 016009 (2011).
[CrossRef]

2010 (2)

2009 (2)

2008 (4)

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
[CrossRef]

J. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16, 3197–3203 (2008).
[CrossRef]

D. Duncan, S. Kirkpatrick, and J. Gladish, “What is the proper statistical model for laser speckle flowmetry,” Proc. SPIE 6855, 685502 (2008).
[CrossRef]

P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008).
[CrossRef]

2005 (1)

A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
[CrossRef]

2003 (1)

1999 (1)

F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
[CrossRef]

1981 (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

1976 (1)

Andermann, M.

A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
[CrossRef]

A. Dunn, A. Devor, H. Bolay, M. Andermann, M. Moskowitz, A. Dale, and D. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef]

Atchia, Y.

Y. Atchia, H. Levy, and O. Levi, “Deviations in long exposure laser speckle contrast imaging: accounting for static scatterers,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology (Optical Society of America, 2012).

Ayata, C.

P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008).
[CrossRef]

Boas, D.

D. Boas and A. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[CrossRef]

P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008).
[CrossRef]

A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
[CrossRef]

A. Dunn, A. Devor, H. Bolay, M. Andermann, M. Moskowitz, A. Dale, and D. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef]

Bolay, H.

Bonavita, S.

F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
[CrossRef]

Bouchard, M.

Briers, J.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Burgess, S.

Burns, L.

K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).
[CrossRef]

Chen, B.

Choi, B.

Cocker, E.

K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).
[CrossRef]

Cuccia, D.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16, 016009 (2011).
[CrossRef]

Dale, A.

A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
[CrossRef]

A. Dunn, A. Devor, H. Bolay, M. Andermann, M. Moskowitz, A. Dale, and D. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef]

Devor, A.

A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
[CrossRef]

A. Dunn, A. Devor, H. Bolay, M. Andermann, M. Moskowitz, A. Dale, and D. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef]

Di Salle, F.

F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
[CrossRef]

Du, C.

Duncan, D.

D. Duncan, S. Kirkpatrick, and J. Gladish, “What is the proper statistical model for laser speckle flowmetry,” Proc. SPIE 6855, 685502 (2008).
[CrossRef]

Dunn, A.

D. Boas and A. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[CrossRef]

A. Parthasarathy, S. Kazmi, and A. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with multi-exposure speckle imaging,” Biomed. Opt. Express 1, 246–259 (2010).
[CrossRef]

P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008).
[CrossRef]

A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
[CrossRef]

A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
[CrossRef]

A. Dunn, A. Devor, H. Bolay, M. Andermann, M. Moskowitz, A. Dale, and D. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef]

Ebeling, K.

R. Michalzik and K. Ebeling, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2002) p. 53.

El Gamal, A.

K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).
[CrossRef]

Fercher, A.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Formisano, E.

F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
[CrossRef]

Ghosh, K.

K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).
[CrossRef]

Gladish, J.

D. Duncan, S. Kirkpatrick, and J. Gladish, “What is the proper statistical model for laser speckle flowmetry,” Proc. SPIE 6855, 685502 (2008).
[CrossRef]

Goebel, R.

F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
[CrossRef]

Goodman, J.

Gopal, A.

Guizar-Iturbide, I.

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2011) p. 552.

Hillman, E.

Hyman, B.

P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008).
[CrossRef]

Jones, P.

P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008).
[CrossRef]

Jones, S.

A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
[CrossRef]

Kazmi, S.

Kirkpatrick, S.

D. Duncan, S. Kirkpatrick, and J. Gladish, “What is the proper statistical model for laser speckle flowmetry,” Proc. SPIE 6855, 685502 (2008).
[CrossRef]

Levi, O.

Levy, H.

Li, Y.

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[CrossRef]

Linden, D.

F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
[CrossRef]

Liu, Q.

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[CrossRef]

Lu, H.

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[CrossRef]

Luo, Z.

Martínez-Niconoff, G.

Miao, P.

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[CrossRef]

Michalzik, R.

R. Michalzik and K. Ebeling, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2002) p. 53.

Moskowitz, M.

P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008).
[CrossRef]

A. Dunn, A. Devor, H. Bolay, M. Andermann, M. Moskowitz, A. Dale, and D. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef]

Munro, E.

Narayanan, S.

A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
[CrossRef]

Nimmerjahn, A.

K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).
[CrossRef]

O’Sullivan, T.

Pan, Y.

Parthasarathy, A.

Pepino, A.

F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
[CrossRef]

Ramirez-San-Juan, J.

Ramos-García, R.

Ringuette, D.

Schnitzer, M.

K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).
[CrossRef]

Shin, H.

P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008).
[CrossRef]

Smaltino, F.

F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
[CrossRef]

Tedeschi, G.

F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
[CrossRef]

Tom, W.

Tong, S.

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[CrossRef]

Ulbert, I.

A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
[CrossRef]

Yang, O.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16, 016009 (2011).
[CrossRef]

Yuan, Z.

Zhang, X.

Ziv, Y.

K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).
[CrossRef]

Biomed. Opt. Express (2)

Eur. J. Radiol. (1)

F. Di Salle, E. Formisano, D. Linden, R. Goebel, S. Bonavita, A. Pepino, F. Smaltino, and G. Tedeschi, “Exploring brain function with magnetic resonance imaging,” Eur. J. Radiol. 30, 84–94 (1999).
[CrossRef]

J. Biomed. Opt. (4)

P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13, 044007 (2008).
[CrossRef]

P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16, 090502 (2011).
[CrossRef]

D. Boas and A. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[CrossRef]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16, 016009 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Methods (1)

K. Ghosh, L. Burns, E. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).
[CrossRef]

Opt. Commun. (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (1)

A. Devor, I. Ulbert, A. Dunn, S. Narayanan, S. Jones, M. Andermann, D. Boas, and A. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. USA 102, 3822–3827(2005).
[CrossRef]

Proc. SPIE (1)

D. Duncan, S. Kirkpatrick, and J. Gladish, “What is the proper statistical model for laser speckle flowmetry,” Proc. SPIE 6855, 685502 (2008).
[CrossRef]

Other (3)

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2011) p. 552.

R. Michalzik and K. Ebeling, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2002) p. 53.

Y. Atchia, H. Levy, and O. Levi, “Deviations in long exposure laser speckle contrast imaging: accounting for static scatterers,” in Applied Industrial Optics: Spectroscopy, Imaging and Metrology (Optical Society of America, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup of the imaging system. (b) Camera and laser onset time schematic; the VCSEL illumination was initiated 300 μs (much greater time than laser transient time) before the camera exposure time onset, and (c) changes of speckle contrast ratio with current on phantom (red dots) and in vivo (red crossed circle) and changes of optical power with current (blue squares). Note that K values do not change more than 15%, from 1.05 to 3.0 mA, while providing 7-fold increase in optical power.

Fig. 2.
Fig. 2.

(a) 300 averaged speckle contrast ratio map from 50 μs to 30 ms obtained by changing exposure time of VCSELs. (b) Speckle contrast ratio data from a vein fitted to both a Gaussian and Lorentzian model. (c) ρ map obtained from VCSELs. (d) Relative velocity map obtained using VCSELs.

Fig. 3.
Fig. 3.

(a) Comparison of long-exposure relative velocity map to absolute velocities obtained using a green LED. ρ values are shown on each point. A linear fit through the origin is in green. (b) Comparison of a Lorentzian multiexposure speckle imaging to absolute velocities. Significant improvement in a linear fit through the origin is found as compared to using the long-exposure approximation. (c) Comparison of a Gaussian multiexposure speckle imaging to absolute velocities. There are no significant differences as compared to using a Lorentzian model.

Fig. 4.
Fig. 4.

(a), (b) Percentage changes of ρ for Lorentzian and Gaussian models from 200 to +600 μm. Changes of ±20% happen in vessels. (c)–(e) Percentage changes of relative velocity maps for long-exposure and Lorentzian/Gaussian models. Velocity measurements vary by as much as ±80% even when multi-exposure fitting is used.

Fig. 5.
Fig. 5.

(a) Changes in ρ along a vessel with no major branching in/out suggests ρ can be used to estimate depth. (b) Comparing best focus using a green LED to (1/ρ1) values. A correlation is observed which allows for estimation of vessel depth. (c) 3D map of in-focus vessels with depth estimated in microns using linear fit of (b). Color represents relative velocity as estimated from multiexposure data.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

K=σI.
τc=2TK2.
K(T,τc)=(βρ2e2x1+2x2x2+4βρ(1ρ)ex1+xx2+νne+νnoise)12,
limx0K=β+νnoise=βρ(2ρ)+νne+νnoise.
K(T,τc)=(βρ2e2x21+2πxerf(2x)2x2+2βρ(1ρ)ex21+πxerf(x)x2+β(1ρ)2+νnoise)12.
γIsIf=(1ρ1).

Metrics