Abstract

Inexpensive millimeter-wavelength (MMW) optical digital imaging raises a challenge of evaluating the imaging performance and image quality because of the large electromagnetic wavelengths and pixel sensor sizes, which are 2 to 3 orders of magnitude larger than those of ordinary thermal or visual imaging systems, and also because of the noisiness of the inexpensive glow discharge detectors that compose the focal-plane array. This study quantifies the performances of this MMW imaging system. Its point-spread function and modulation transfer function were investigated. The experimental results and the analysis indicate that the image quality of this MMW imaging system is limited mostly by the noise, and the blur is dominated by the pixel sensor size. Therefore, the MMW image might be improved by oversampling, given that noise reduction is achieved. Demonstration of MMW image improvement through oversampling is presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Inexpensive detector for terahertz imaging,” Appl. Opt. 46, 7207–7211 (2007).
    [CrossRef]
  2. F. Sizov, “THz radiation sensors,” Opto-Electron. Rev. 18, 10–36 (2010).
    [CrossRef]
  3. M. A. Lampert and A. D. White, “Microwave techniques for studying discharges in gases,” Electron. Commun. 30, 124–128 (1953).
  4. B. J. Udelson, “Effect of microwave signals incident upon different regions of a dc hydrogen glow discharge,” J. Appl. Phys. 28, 380–381 (1957).
    [CrossRef]
  5. P. J. W. Severin and A. G. Van Nie, “A simple and rugged wide-band gas discharge detector for millimeter waves,” IEEE Trans. Microwave Theor. Tech. 14, 431–436 (1966).
    [CrossRef]
  6. N. H. Farhat, “Optimization of millimeter wave glow discharge detectors,” Proc. IEEE 62, 279–281 (1974).
    [CrossRef]
  7. N. S. Kopeika, “On the mechanism of glow discharge detection of microwave and millimeter wave radiation,” Proc. IEEE 63, 981–982 (1975).
    [CrossRef]
  8. N. S. Kopeika, “Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties,” IEEE Trans. Plasma Sci. 6, 139–157 (1978).
    [CrossRef]
  9. G. D. Lobov, “Gas discharge detector of microwave oscillations,” Radiotekh. Eleektron. 5, 152–165 (1960).
  10. D. Rozban, N. S. Kopeika, A. Abramovich, and E. Farber, “Terahertz detection mechanism of inexpensive sensitive glow discharge detectors,” J. Appl. Phys. 103, 093306 (2008).
    [CrossRef]
  11. A. Abramovich, N. S. Kopeika, and D. Rozban, “THz polarization effects on detection responsivity of glow discharge detectors (GDD),” IEEE Sensors J. 9, 1181–1184 (2009).
    [CrossRef]
  12. A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of diffraction limited focal plane arrays for mm wavelength and terahertz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
    [CrossRef]
  13. N. S. Kopeika, A. Abramovich, O. Yadid-Pecht, H. Joseph, A. Akram, A. Belenky, and S. Lineykin, “First operation of 8X8 glow discharge detector VLSI focal plane array towards mm wave and THz radiation video rate imaging,” Proc. SPIE 7485, 74850K (2009).
    [CrossRef]
  14. L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
    [CrossRef]
  15. L. Hou and W. Shi, “Fast terahertz continuous-wave detector based on weakly ionized plasma,” IEEE Electron Device Lett. 33, 1583–1585 (2012).
    [CrossRef]
  16. H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
    [CrossRef]
  17. N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, 1998).
  18. J. A. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1969).
  19. T. W. Crowe, J. L. Hesler, R. M. Weikle, and S. H. Jones, “GaAs devices and circuits for terahertz applications,” Infrared Phys. Technol. 40, 175–189 (1999).
    [CrossRef]
  20. J. A. Murphy and R. Padman, “Phase centers of horn antennas using Gaussian mode analysis,” IEEE Trans. Antennas Propag. 38, 1306–1310 (1990).
    [CrossRef]
  21. P. F. Goldsmith, “Quasi optical technique at millimeter and sub-millimeter wavelengths,” in Infrared and Millimeter Waves, K. Button, ed. (Academic, 1982), Chap. 5, Vol. 6, pp. 277–343.
  22. D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
    [CrossRef]
  23. A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
    [CrossRef]
  24. A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

2012

L. Hou and W. Shi, “Fast terahertz continuous-wave detector based on weakly ionized plasma,” IEEE Electron Device Lett. 33, 1583–1585 (2012).
[CrossRef]

2011

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

2010

F. Sizov, “THz radiation sensors,” Opto-Electron. Rev. 18, 10–36 (2010).
[CrossRef]

2009

A. Abramovich, N. S. Kopeika, and D. Rozban, “THz polarization effects on detection responsivity of glow discharge detectors (GDD),” IEEE Sensors J. 9, 1181–1184 (2009).
[CrossRef]

N. S. Kopeika, A. Abramovich, O. Yadid-Pecht, H. Joseph, A. Akram, A. Belenky, and S. Lineykin, “First operation of 8X8 glow discharge detector VLSI focal plane array towards mm wave and THz radiation video rate imaging,” Proc. SPIE 7485, 74850K (2009).
[CrossRef]

2008

A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of diffraction limited focal plane arrays for mm wavelength and terahertz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
[CrossRef]

D. Rozban, N. S. Kopeika, A. Abramovich, and E. Farber, “Terahertz detection mechanism of inexpensive sensitive glow discharge detectors,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

2007

1999

T. W. Crowe, J. L. Hesler, R. M. Weikle, and S. H. Jones, “GaAs devices and circuits for terahertz applications,” Infrared Phys. Technol. 40, 175–189 (1999).
[CrossRef]

1990

J. A. Murphy and R. Padman, “Phase centers of horn antennas using Gaussian mode analysis,” IEEE Trans. Antennas Propag. 38, 1306–1310 (1990).
[CrossRef]

1978

N. S. Kopeika, “Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties,” IEEE Trans. Plasma Sci. 6, 139–157 (1978).
[CrossRef]

1975

N. S. Kopeika, “On the mechanism of glow discharge detection of microwave and millimeter wave radiation,” Proc. IEEE 63, 981–982 (1975).
[CrossRef]

1974

N. H. Farhat, “Optimization of millimeter wave glow discharge detectors,” Proc. IEEE 62, 279–281 (1974).
[CrossRef]

1966

P. J. W. Severin and A. G. Van Nie, “A simple and rugged wide-band gas discharge detector for millimeter waves,” IEEE Trans. Microwave Theor. Tech. 14, 431–436 (1966).
[CrossRef]

1960

G. D. Lobov, “Gas discharge detector of microwave oscillations,” Radiotekh. Eleektron. 5, 152–165 (1960).

1957

B. J. Udelson, “Effect of microwave signals incident upon different regions of a dc hydrogen glow discharge,” J. Appl. Phys. 28, 380–381 (1957).
[CrossRef]

1953

M. A. Lampert and A. D. White, “Microwave techniques for studying discharges in gases,” Electron. Commun. 30, 124–128 (1953).

Abramovich, A.

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “THz polarization effects on detection responsivity of glow discharge detectors (GDD),” IEEE Sensors J. 9, 1181–1184 (2009).
[CrossRef]

N. S. Kopeika, A. Abramovich, O. Yadid-Pecht, H. Joseph, A. Akram, A. Belenky, and S. Lineykin, “First operation of 8X8 glow discharge detector VLSI focal plane array towards mm wave and THz radiation video rate imaging,” Proc. SPIE 7485, 74850K (2009).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of diffraction limited focal plane arrays for mm wavelength and terahertz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
[CrossRef]

D. Rozban, N. S. Kopeika, A. Abramovich, and E. Farber, “Terahertz detection mechanism of inexpensive sensitive glow discharge detectors,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Inexpensive detector for terahertz imaging,” Appl. Opt. 46, 7207–7211 (2007).
[CrossRef]

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

Akram, A.

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

N. S. Kopeika, A. Abramovich, O. Yadid-Pecht, H. Joseph, A. Akram, A. Belenky, and S. Lineykin, “First operation of 8X8 glow discharge detector VLSI focal plane array towards mm wave and THz radiation video rate imaging,” Proc. SPIE 7485, 74850K (2009).
[CrossRef]

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

Belenky, A.

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

N. S. Kopeika, A. Abramovich, O. Yadid-Pecht, H. Joseph, A. Akram, A. Belenky, and S. Lineykin, “First operation of 8X8 glow discharge detector VLSI focal plane array towards mm wave and THz radiation video rate imaging,” Proc. SPIE 7485, 74850K (2009).
[CrossRef]

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

Crowe, T. W.

T. W. Crowe, J. L. Hesler, R. M. Weikle, and S. H. Jones, “GaAs devices and circuits for terahertz applications,” Infrared Phys. Technol. 40, 175–189 (1999).
[CrossRef]

Farber, E.

D. Rozban, N. S. Kopeika, A. Abramovich, and E. Farber, “Terahertz detection mechanism of inexpensive sensitive glow discharge detectors,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Inexpensive detector for terahertz imaging,” Appl. Opt. 46, 7207–7211 (2007).
[CrossRef]

Farhat, N. H.

N. H. Farhat, “Optimization of millimeter wave glow discharge detectors,” Proc. IEEE 62, 279–281 (1974).
[CrossRef]

Gefen, M.

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

Goldsmith, P. F.

P. F. Goldsmith, “Quasi optical technique at millimeter and sub-millimeter wavelengths,” in Infrared and Millimeter Waves, K. Button, ed. (Academic, 1982), Chap. 5, Vol. 6, pp. 277–343.

Goodman, J. A.

J. A. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1969).

Hesler, J. L.

T. W. Crowe, J. L. Hesler, R. M. Weikle, and S. H. Jones, “GaAs devices and circuits for terahertz applications,” Infrared Phys. Technol. 40, 175–189 (1999).
[CrossRef]

Hou, L.

L. Hou and W. Shi, “Fast terahertz continuous-wave detector based on weakly ionized plasma,” IEEE Electron Device Lett. 33, 1583–1585 (2012).
[CrossRef]

L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
[CrossRef]

Jones, S. H.

T. W. Crowe, J. L. Hesler, R. M. Weikle, and S. H. Jones, “GaAs devices and circuits for terahertz applications,” Infrared Phys. Technol. 40, 175–189 (1999).
[CrossRef]

Joseph, H.

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

N. S. Kopeika, A. Abramovich, O. Yadid-Pecht, H. Joseph, A. Akram, A. Belenky, and S. Lineykin, “First operation of 8X8 glow discharge detector VLSI focal plane array towards mm wave and THz radiation video rate imaging,” Proc. SPIE 7485, 74850K (2009).
[CrossRef]

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

Kopeika, N. S.

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

N. S. Kopeika, A. Abramovich, O. Yadid-Pecht, H. Joseph, A. Akram, A. Belenky, and S. Lineykin, “First operation of 8X8 glow discharge detector VLSI focal plane array towards mm wave and THz radiation video rate imaging,” Proc. SPIE 7485, 74850K (2009).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “THz polarization effects on detection responsivity of glow discharge detectors (GDD),” IEEE Sensors J. 9, 1181–1184 (2009).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of diffraction limited focal plane arrays for mm wavelength and terahertz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
[CrossRef]

D. Rozban, N. S. Kopeika, A. Abramovich, and E. Farber, “Terahertz detection mechanism of inexpensive sensitive glow discharge detectors,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Inexpensive detector for terahertz imaging,” Appl. Opt. 46, 7207–7211 (2007).
[CrossRef]

N. S. Kopeika, “Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties,” IEEE Trans. Plasma Sci. 6, 139–157 (1978).
[CrossRef]

N. S. Kopeika, “On the mechanism of glow discharge detection of microwave and millimeter wave radiation,” Proc. IEEE 63, 981–982 (1975).
[CrossRef]

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, 1998).

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

Lampert, M. A.

M. A. Lampert and A. D. White, “Microwave techniques for studying discharges in gases,” Electron. Commun. 30, 124–128 (1953).

Levanon, A.

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

Lineykin, S.

N. S. Kopeika, A. Abramovich, O. Yadid-Pecht, H. Joseph, A. Akram, A. Belenky, and S. Lineykin, “First operation of 8X8 glow discharge detector VLSI focal plane array towards mm wave and THz radiation video rate imaging,” Proc. SPIE 7485, 74850K (2009).
[CrossRef]

Lobov, G. D.

G. D. Lobov, “Gas discharge detector of microwave oscillations,” Radiotekh. Eleektron. 5, 152–165 (1960).

Murphy, J. A.

J. A. Murphy and R. Padman, “Phase centers of horn antennas using Gaussian mode analysis,” IEEE Trans. Antennas Propag. 38, 1306–1310 (1990).
[CrossRef]

Padman, R.

J. A. Murphy and R. Padman, “Phase centers of horn antennas using Gaussian mode analysis,” IEEE Trans. Antennas Propag. 38, 1306–1310 (1990).
[CrossRef]

Park, H.

L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
[CrossRef]

Rozban, D.

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “THz polarization effects on detection responsivity of glow discharge detectors (GDD),” IEEE Sensors J. 9, 1181–1184 (2009).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of diffraction limited focal plane arrays for mm wavelength and terahertz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
[CrossRef]

D. Rozban, N. S. Kopeika, A. Abramovich, and E. Farber, “Terahertz detection mechanism of inexpensive sensitive glow discharge detectors,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Inexpensive detector for terahertz imaging,” Appl. Opt. 46, 7207–7211 (2007).
[CrossRef]

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

Severin, P. J. W.

P. J. W. Severin and A. G. Van Nie, “A simple and rugged wide-band gas discharge detector for millimeter waves,” IEEE Trans. Microwave Theor. Tech. 14, 431–436 (1966).
[CrossRef]

Shi, W.

L. Hou and W. Shi, “Fast terahertz continuous-wave detector based on weakly ionized plasma,” IEEE Electron Device Lett. 33, 1583–1585 (2012).
[CrossRef]

Shilemay, M.

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

Sizov, F.

F. Sizov, “THz radiation sensors,” Opto-Electron. Rev. 18, 10–36 (2010).
[CrossRef]

Udelson, B. J.

B. J. Udelson, “Effect of microwave signals incident upon different regions of a dc hydrogen glow discharge,” J. Appl. Phys. 28, 380–381 (1957).
[CrossRef]

Van Nie, A. G.

P. J. W. Severin and A. G. Van Nie, “A simple and rugged wide-band gas discharge detector for millimeter waves,” IEEE Trans. Microwave Theor. Tech. 14, 431–436 (1966).
[CrossRef]

Weikle, R. M.

T. W. Crowe, J. L. Hesler, R. M. Weikle, and S. H. Jones, “GaAs devices and circuits for terahertz applications,” Infrared Phys. Technol. 40, 175–189 (1999).
[CrossRef]

White, A. D.

M. A. Lampert and A. D. White, “Microwave techniques for studying discharges in gases,” Electron. Commun. 30, 124–128 (1953).

Yadid-Pecht, O.

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

N. S. Kopeika, A. Abramovich, O. Yadid-Pecht, H. Joseph, A. Akram, A. Belenky, and S. Lineykin, “First operation of 8X8 glow discharge detector VLSI focal plane array towards mm wave and THz radiation video rate imaging,” Proc. SPIE 7485, 74850K (2009).
[CrossRef]

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

Yitzhaky, Y.

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

Zhang, X. C.

L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
[CrossRef]

Appl. Opt.

Electron. Commun.

M. A. Lampert and A. D. White, “Microwave techniques for studying discharges in gases,” Electron. Commun. 30, 124–128 (1953).

IEEE Electron Device Lett.

L. Hou and W. Shi, “Fast terahertz continuous-wave detector based on weakly ionized plasma,” IEEE Electron Device Lett. 33, 1583–1585 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
[CrossRef]

IEEE Sens. J.

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using miniature neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

IEEE Sensors J.

A. Abramovich, N. S. Kopeika, and D. Rozban, “THz polarization effects on detection responsivity of glow discharge detectors (GDD),” IEEE Sensors J. 9, 1181–1184 (2009).
[CrossRef]

IEEE Trans. Antennas Propag.

J. A. Murphy and R. Padman, “Phase centers of horn antennas using Gaussian mode analysis,” IEEE Trans. Antennas Propag. 38, 1306–1310 (1990).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

P. J. W. Severin and A. G. Van Nie, “A simple and rugged wide-band gas discharge detector for millimeter waves,” IEEE Trans. Microwave Theor. Tech. 14, 431–436 (1966).
[CrossRef]

IEEE Trans. Plasma Sci.

N. S. Kopeika, “Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties,” IEEE Trans. Plasma Sci. 6, 139–157 (1978).
[CrossRef]

Infrared Phys. Technol.

T. W. Crowe, J. L. Hesler, R. M. Weikle, and S. H. Jones, “GaAs devices and circuits for terahertz applications,” Infrared Phys. Technol. 40, 175–189 (1999).
[CrossRef]

J. Appl. Phys.

B. J. Udelson, “Effect of microwave signals incident upon different regions of a dc hydrogen glow discharge,” J. Appl. Phys. 28, 380–381 (1957).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of diffraction limited focal plane arrays for mm wavelength and terahertz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
[CrossRef]

D. Rozban, N. S. Kopeika, A. Abramovich, and E. Farber, “Terahertz detection mechanism of inexpensive sensitive glow discharge detectors,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

Opto-Electron. Rev.

F. Sizov, “THz radiation sensors,” Opto-Electron. Rev. 18, 10–36 (2010).
[CrossRef]

Proc. IEEE

N. H. Farhat, “Optimization of millimeter wave glow discharge detectors,” Proc. IEEE 62, 279–281 (1974).
[CrossRef]

N. S. Kopeika, “On the mechanism of glow discharge detection of microwave and millimeter wave radiation,” Proc. IEEE 63, 981–982 (1975).
[CrossRef]

Proc. SPIE

N. S. Kopeika, A. Abramovich, O. Yadid-Pecht, H. Joseph, A. Akram, A. Belenky, and S. Lineykin, “First operation of 8X8 glow discharge detector VLSI focal plane array towards mm wave and THz radiation video rate imaging,” Proc. SPIE 7485, 74850K (2009).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, A. Levanon, M. Shilemay, A. Akram, H. Joseph, O. Yadid-Pecht, and A. Belenky, “Super resolution and optical properties of THz double row array based on inexpensive glow discharge detector (GDD) pixels,” Proc. SPIE 8188–8189, 81880A (2011).
[CrossRef]

Radiotekh. Eleektron.

G. D. Lobov, “Gas discharge detector of microwave oscillations,” Radiotekh. Eleektron. 5, 152–165 (1960).

Other

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, 1998).

J. A. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1969).

A. Levanon, A. Akram, N. S. Kopeika, A. Abramovich, D. Rozban, Y. Yitzhaky, H. Joseph, A. Belenky, M. Gefen, and O. Yadid-Pecht, “Oversampling advances in mm wave and THz radiation imaging using inexpensive Ne indicator lamp detectors,” Opt. Eng. (to be published).

P. F. Goldsmith, “Quasi optical technique at millimeter and sub-millimeter wavelengths,” in Infrared and Millimeter Waves, K. Button, ed. (Academic, 1982), Chap. 5, Vol. 6, pp. 277–343.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the MMW imaging system.

Fig. 2.
Fig. 2.

Images of metal circle objects. (a) Visible-light image of a 7.6 mm diameter metal circle object. (b) Its corresponding 8×8 MMW image and (c) spatially interpolated contour-view MMW image. (d) Visible-light image of an 8.6 mm diameter metal circle object. (e) Its corresponding 8×8 MMW image and (f) spatially interpolated contour-view MMW image.

Fig. 3.
Fig. 3.

Images of a metal plate with 9 mm width slit. (a) Visible-light image. (b) Its corresponding 8×8 MMW image and (c) spatially interpolated contour-view MMW image.

Fig. 4.
Fig. 4.

Simulation of the MMW imaging system MTF regardless of the FPA. T and S are the tangential and sagittal axes in the image plane.

Fig. 5.
Fig. 5.

Measured spatial response of GDD N523 detected signal as a function of distance from the center.

Fig. 6.
Fig. 6.

Demonstration of oversampling method. (a) Visible light image of a L-shaped metal object. (b) 8×8 pixel image of this object. (c) 32×32 pixel image after employing the oversampling method [24].

Tables (1)

Tables Icon

Table 1. Calculations, Measurement, and Simulation Results of the Maximum Spatial Frequency

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

OTF(ξ,η)=MTF(ξ,η)exp{jPTF(ξ,η)},
I(ξ,η)=OTF(ξ,η)O(ξ,η),
OTF(ξ,η)=psf(x,y)exp{j2π(ξx+ηy)}dxdy.
m=+n=+psf(mΔx,nΔy)exp{j2π(Δxξm+Δyηn)}=1Δx1Δym=+n=+OTF(ξmΔx,ηnΔy),
ξmax=Dλf,
ξmax=12ξs,
ξmax-optics=500mm3mm/cyc*1000mm=16cycmm0.167cycmm.
ξmax-FPA=114cyclesmm0.071cyclesmm.
ξmax-measurement12*9cyclesmm0.056cyclesmm.

Metrics