Abstract

In this paper we present a super-resolving approach for detecting an axially moving target that is based upon a time-multiplexing concept and that overcomes the diffraction limit set by the optics of an imaging camera by a priori knowledge of the high-resolution background in front of which the target is moving. As the movement trajectory is axial, the approach can be applied to targets that are approaching or moving away from the camera. By recording a set of low-resolution images at different target axial positions, the super-resolving algorithm weights each image by demultiplexing them using the high-resolution background image and provides a super-resolved image of the target. Theoretical analyses as well as simulations and preliminary experimental validation are presented to validate the proposed approach.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superresolved imaging of remote moving targets

Javier García, Zeev Zalevsky, and Carlos Ferreira
Opt. Lett. 31(5) 586-588 (2006)

Exceeding the resolving imaging power using environmental conditions

Zeev Zalevsky, Efi Saat, Shahar Orbach, Vicente Mico, and Javier Garcia
Appl. Opt. 47(4) A1-A6 (2008)

Contour superresolved imaging of static ground targets using satellite platform

Asaf Ilovitsh, Shlomo Zach, and Zeev Zalevsky
Appl. Opt. 51(24) 5863-5868 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription