Abstract

A high-stability and high-efficiency ring Ti:sapphire regenerative amplifier is demonstrated based on a double-gating pulse picker at a repetition rate of 1 kHz. Pulse energy up to 5.7 mJ is obtained using a pump energy of 20.0 mJ at 527 nm, corresponding to a relatively high slope efficiency of 30.3%. After a grating compressor, the laser pulse is compressed to 37.2 fs with an energy of 4.1 mJ. The beam quality factors M2 are 1.4 and 1.3 in tangential and sagittal directions, respectively. The measured root mean square energy stability is better than 0.31% over an 11 h period.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221(1985).
    [CrossRef]
  2. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20, 10807–10815 (2012).
    [CrossRef]
  3. Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, and Z. Wei, “High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier,” Opt. Lett. 36, 3194–3196 (2011).
    [CrossRef]
  4. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
    [CrossRef]
  5. E. Goulielmakis, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
    [CrossRef]
  6. G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
    [CrossRef]
  7. A. H. Zewail, “4D ultrafast electron diffraction, crystallography, and microscopy,” Annu. Rev. Phys. Chem. 57, 65–103(2006).
    [CrossRef]
  8. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [CrossRef]
  9. M. S. Giridhar, K. Seong, A. Schulzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,” Appl. Opt. 43, 4584–4589(2004).
    [CrossRef]
  10. Z. Y. Zhang, R. Y. Chu, X. T. Zhou, J. H. Dai, X. H. Sun, M. R. Hoffman, and X. R. Zhang, “Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation,” Investig. Ophthalmol. Vis. Sci. 50, 2147–2153 (2009).
    [CrossRef]
  11. S. V. Patel, L. J. Maguire, J. W. McLaren, D. O. Hodge, and W. M. Bourne, “Femtosecond laser versus mechanical microkeratome for LASIK,” Ophthalmology 114, 1482–1490 (2007).
    [CrossRef]
  12. G. Munoz, C. Albarran-Diego, H. F. Sakla, T. Ferrer-Blasco, and J. Javaloy, “Effects of LASIK on corneal endothelium using the 15-kHz IntraLase femtosecond laser,” J. Refract. Surg. 27, 672–676 (2011).
    [CrossRef]
  13. A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, and R. W. Falcone, “Multiterawatt, 100-fs laser,” Opt. Lett. 16, 1406–1408 (1991).
    [CrossRef]
  14. C. L. Blanc, G. Grillon, J. P. Chambaret, A. Migus, and A. Antonetti, “Compact and efficient multipass Ti:sapphire system for femtosecond chirped-pulse amplification at the terawatt level,” Opt. Lett. 18, 140–142 (1993).
    [CrossRef]
  15. S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, and K. Torizuka, “Seven-terawatt Ti : sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond x-ray generation,” Appl. Phys. B 76, 497–503 (2003).
    [CrossRef]
  16. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, H. Okada, I. Daito, M. Suzuki, S. Kondo, K. Kondo, A. Sugiyama, P. R. Bolton, A. Yokoyama, H. Daido, S. Kawanishi, T. Kimura, and T. Tajima, “High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system,” Opt. Lett. 35, 1497–1499 (2010).
    [CrossRef]
  17. V. Yanovsky, C. Felix, and G. Mourou, “Why ring regenerative amplification (regen)?,” Appl. Phys. B 74, S181–S183(2002).
    [CrossRef]
  18. C. Liu, Z. Wang, W. Li, Q. Zhang, H. Han, H. Teng, and Z. Wei, “Contrast enhancement in a Ti:sapphire chirped-pulse amplification laser system with a noncollinear femtosecond optical-parametric amplifier,” Opt. Lett. 35, 3096–3098 (2010).
    [CrossRef]
  19. H. Zhao, P. Wang, Z. Y. Wei, J. R. Tian, D. H. Li, Z. H. Wang, and J. Zhang, “Highly efficient and stable ring regenerative amplifier for chirped-pulse amplification at repetition rate 1 kHz,” Chin. Phys. Lett 24, 115–118 (2007).
    [CrossRef]
  20. K. Yamakawa and C. P. J. Barty, “Two-color chirped-pulse amplification in an ultrabroadband Ti:sapphire ring regenerative amplifier,” Opt. Lett. 28, 2402–2404 (2003).
    [CrossRef]
  21. S. Ricaud, F. Druon, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorge, M. Delaigue, Y. Zaouter, A. Courjaud, P. Georges, and E. Mottay, “Short-pulse and high-repetition-rate diode-pumped Yb:CaF(2) regenerative amplifier,” Opt. Lett. 35, 2415–2417 (2010).
    [CrossRef]
  22. M. Innocenzi, H. T. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833(1990).
    [CrossRef]

2012 (1)

2011 (2)

Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, and Z. Wei, “High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier,” Opt. Lett. 36, 3194–3196 (2011).
[CrossRef]

G. Munoz, C. Albarran-Diego, H. F. Sakla, T. Ferrer-Blasco, and J. Javaloy, “Effects of LASIK on corneal endothelium using the 15-kHz IntraLase femtosecond laser,” J. Refract. Surg. 27, 672–676 (2011).
[CrossRef]

2010 (4)

2009 (2)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

Z. Y. Zhang, R. Y. Chu, X. T. Zhou, J. H. Dai, X. H. Sun, M. R. Hoffman, and X. R. Zhang, “Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation,” Investig. Ophthalmol. Vis. Sci. 50, 2147–2153 (2009).
[CrossRef]

2008 (2)

E. Goulielmakis, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

2007 (2)

H. Zhao, P. Wang, Z. Y. Wei, J. R. Tian, D. H. Li, Z. H. Wang, and J. Zhang, “Highly efficient and stable ring regenerative amplifier for chirped-pulse amplification at repetition rate 1 kHz,” Chin. Phys. Lett 24, 115–118 (2007).
[CrossRef]

S. V. Patel, L. J. Maguire, J. W. McLaren, D. O. Hodge, and W. M. Bourne, “Femtosecond laser versus mechanical microkeratome for LASIK,” Ophthalmology 114, 1482–1490 (2007).
[CrossRef]

2006 (1)

A. H. Zewail, “4D ultrafast electron diffraction, crystallography, and microscopy,” Annu. Rev. Phys. Chem. 57, 65–103(2006).
[CrossRef]

2004 (1)

2003 (2)

S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, and K. Torizuka, “Seven-terawatt Ti : sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond x-ray generation,” Appl. Phys. B 76, 497–503 (2003).
[CrossRef]

K. Yamakawa and C. P. J. Barty, “Two-color chirped-pulse amplification in an ultrabroadband Ti:sapphire ring regenerative amplifier,” Opt. Lett. 28, 2402–2404 (2003).
[CrossRef]

2002 (1)

V. Yanovsky, C. Felix, and G. Mourou, “Why ring regenerative amplification (regen)?,” Appl. Phys. B 74, S181–S183(2002).
[CrossRef]

1993 (1)

1991 (1)

1990 (1)

M. Innocenzi, H. T. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833(1990).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221(1985).
[CrossRef]

Albarran-Diego, C.

G. Munoz, C. Albarran-Diego, H. F. Sakla, T. Ferrer-Blasco, and J. Javaloy, “Effects of LASIK on corneal endothelium using the 15-kHz IntraLase femtosecond laser,” J. Refract. Surg. 27, 672–676 (2011).
[CrossRef]

Antonetti, A.

Barty, C. P. J.

Benedetti, E.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Blair, R. J.

Blanc, C. L.

Bolton, P. R.

Bourne, W. M.

S. V. Patel, L. J. Maguire, J. W. McLaren, D. O. Hodge, and W. M. Bourne, “Femtosecond laser versus mechanical microkeratome for LASIK,” Ophthalmology 114, 1482–1490 (2007).
[CrossRef]

Camy, P.

Chambaret, J. P.

Chu, R. Y.

Z. Y. Zhang, R. Y. Chu, X. T. Zhou, J. H. Dai, X. H. Sun, M. R. Hoffman, and X. R. Zhang, “Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation,” Investig. Ophthalmol. Vis. Sci. 50, 2147–2153 (2009).
[CrossRef]

Courjaud, A.

Dai, J. H.

Z. Y. Zhang, R. Y. Chu, X. T. Zhou, J. H. Dai, X. H. Sun, M. R. Hoffman, and X. R. Zhang, “Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation,” Investig. Ophthalmol. Vis. Sci. 50, 2147–2153 (2009).
[CrossRef]

Daido, H.

Daito, I.

Delaigue, M.

Doualan, J. L.

Druon, F.

Endo, A.

S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, and K. Torizuka, “Seven-terawatt Ti : sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond x-ray generation,” Appl. Phys. B 76, 497–503 (2003).
[CrossRef]

Falcone, R. W.

Felix, C.

V. Yanovsky, C. Felix, and G. Mourou, “Why ring regenerative amplification (regen)?,” Appl. Phys. B 74, S181–S183(2002).
[CrossRef]

Ferrari, F.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Ferrer-Blasco, T.

G. Munoz, C. Albarran-Diego, H. F. Sakla, T. Ferrer-Blasco, and J. Javaloy, “Effects of LASIK on corneal endothelium using the 15-kHz IntraLase femtosecond laser,” J. Refract. Surg. 27, 672–676 (2011).
[CrossRef]

Fields, R.

M. Innocenzi, H. T. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833(1990).
[CrossRef]

Fincher, C.

M. Innocenzi, H. T. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833(1990).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Georges, P.

Ghafur, O.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Giridhar, M. S.

Gordon, S.

Goulielmakis, E.

E. Goulielmakis, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Grillon, G.

Hamster, H.

Han, H.

Hodge, D. O.

S. V. Patel, L. J. Maguire, J. W. McLaren, D. O. Hodge, and W. M. Bourne, “Femtosecond laser versus mechanical microkeratome for LASIK,” Ophthalmology 114, 1482–1490 (2007).
[CrossRef]

Hoffman, M. R.

Z. Y. Zhang, R. Y. Chu, X. T. Zhou, J. H. Dai, X. H. Sun, M. R. Hoffman, and X. R. Zhang, “Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation,” Investig. Ophthalmol. Vis. Sci. 50, 2147–2153 (2009).
[CrossRef]

Innocenzi, M.

M. Innocenzi, H. T. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833(1990).
[CrossRef]

Ishikawa, H.

S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, and K. Torizuka, “Seven-terawatt Ti : sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond x-ray generation,” Appl. Phys. B 76, 497–503 (2003).
[CrossRef]

Ito, S.

S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, and K. Torizuka, “Seven-terawatt Ti : sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond x-ray generation,” Appl. Phys. B 76, 497–503 (2003).
[CrossRef]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

Ivanov, M. Y.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Javaloy, J.

G. Munoz, C. Albarran-Diego, H. F. Sakla, T. Ferrer-Blasco, and J. Javaloy, “Effects of LASIK on corneal endothelium using the 15-kHz IntraLase femtosecond laser,” J. Refract. Surg. 27, 672–676 (2011).
[CrossRef]

Jeong, T. M.

Johnsson, P.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Kanazawa, S.

Kapteyn, H. C.

Kawanishi, S.

Kelkensberg, F.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Khulbe, P.

Kimura, T.

Kiriyama, H.

Kling, M. F.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Kondo, K.

Kondo, S.

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

L’Huillier, A.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Lee, J.

Lee, S. K.

Lepine, F.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Li, D. H.

H. Zhao, P. Wang, Z. Y. Wei, J. R. Tian, D. H. Li, Z. H. Wang, and J. Zhang, “Highly efficient and stable ring regenerative amplifier for chirped-pulse amplification at repetition rate 1 kHz,” Chin. Phys. Lett 24, 115–118 (2007).
[CrossRef]

Li, W.

Liu, C.

Maguire, L. J.

S. V. Patel, L. J. Maguire, J. W. McLaren, D. O. Hodge, and W. M. Bourne, “Femtosecond laser versus mechanical microkeratome for LASIK,” Ophthalmology 114, 1482–1490 (2007).
[CrossRef]

Mansuripur, M.

Martin, F.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

McLaren, J. W.

S. V. Patel, L. J. Maguire, J. W. McLaren, D. O. Hodge, and W. M. Bourne, “Femtosecond laser versus mechanical microkeratome for LASIK,” Ophthalmology 114, 1482–1490 (2007).
[CrossRef]

Migus, A.

Miura, T.

S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, and K. Torizuka, “Seven-terawatt Ti : sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond x-ray generation,” Appl. Phys. B 76, 497–503 (2003).
[CrossRef]

Moncorge, R.

Morales, F.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Mori, M.

Mottay, E.

Mourou, G.

V. Yanovsky, C. Felix, and G. Mourou, “Why ring regenerative amplification (regen)?,” Appl. Phys. B 74, S181–S183(2002).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221(1985).
[CrossRef]

Munoz, G.

G. Munoz, C. Albarran-Diego, H. F. Sakla, T. Ferrer-Blasco, and J. Javaloy, “Effects of LASIK on corneal endothelium using the 15-kHz IntraLase femtosecond laser,” J. Refract. Surg. 27, 672–676 (2011).
[CrossRef]

Nakai, Y.

Nathel, H.

Nisoli, M.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Okada, H.

Papadopoulos, D. N.

Patel, S. V.

S. V. Patel, L. J. Maguire, J. W. McLaren, D. O. Hodge, and W. M. Bourne, “Femtosecond laser versus mechanical microkeratome for LASIK,” Ophthalmology 114, 1482–1490 (2007).
[CrossRef]

Perez-Torres, J. F.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Peyghambarian, N.

Ricaud, S.

Sakla, H. F.

G. Munoz, C. Albarran-Diego, H. F. Sakla, T. Ferrer-Blasco, and J. Javaloy, “Effects of LASIK on corneal endothelium using the 15-kHz IntraLase femtosecond laser,” J. Refract. Surg. 27, 672–676 (2011).
[CrossRef]

Sansone, G.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Sanz-Vicario, J. L.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Sasao, F.

Sasao, H.

Schulzgen, A.

Seong, K.

Shen, Z.

Shimomura, T.

Siu, W.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221(1985).
[CrossRef]

Sugiyama, A.

Sullivan, A.

Sun, X. H.

Z. Y. Zhang, R. Y. Chu, X. T. Zhou, J. H. Dai, X. H. Sun, M. R. Hoffman, and X. R. Zhang, “Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation,” Investig. Ophthalmol. Vis. Sci. 50, 2147–2153 (2009).
[CrossRef]

Sung, J. H.

Suzuki, M.

Swoboda, M.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Tajima, T.

Takasago, K.

S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, and K. Torizuka, “Seven-terawatt Ti : sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond x-ray generation,” Appl. Phys. B 76, 497–503 (2003).
[CrossRef]

Tanoue, M.

Teng, H.

Tian, J. R.

H. Zhao, P. Wang, Z. Y. Wei, J. R. Tian, D. H. Li, Z. H. Wang, and J. Zhang, “Highly efficient and stable ring regenerative amplifier for chirped-pulse amplification at repetition rate 1 kHz,” Chin. Phys. Lett 24, 115–118 (2007).
[CrossRef]

Torizuka, K.

S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, and K. Torizuka, “Seven-terawatt Ti : sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond x-ray generation,” Appl. Phys. B 76, 497–503 (2003).
[CrossRef]

Vrakking, M. J. J.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Wakai, D.

Wang, P.

H. Zhao, P. Wang, Z. Y. Wei, J. R. Tian, D. H. Li, Z. H. Wang, and J. Zhang, “Highly efficient and stable ring regenerative amplifier for chirped-pulse amplification at repetition rate 1 kHz,” Chin. Phys. Lett 24, 115–118 (2007).
[CrossRef]

Wang, Z.

Wang, Z. H.

H. Zhao, P. Wang, Z. Y. Wei, J. R. Tian, D. H. Li, Z. H. Wang, and J. Zhang, “Highly efficient and stable ring regenerative amplifier for chirped-pulse amplification at repetition rate 1 kHz,” Chin. Phys. Lett 24, 115–118 (2007).
[CrossRef]

Wei, Z.

Wei, Z. Y.

H. Zhao, P. Wang, Z. Y. Wei, J. R. Tian, D. H. Li, Z. H. Wang, and J. Zhang, “Highly efficient and stable ring regenerative amplifier for chirped-pulse amplification at repetition rate 1 kHz,” Chin. Phys. Lett 24, 115–118 (2007).
[CrossRef]

White, W.

Yamakawa, K.

Yanovsky, V.

V. Yanovsky, C. Felix, and G. Mourou, “Why ring regenerative amplification (regen)?,” Appl. Phys. B 74, S181–S183(2002).
[CrossRef]

Yokoyama, A.

Yoon, J. W.

Yu, T. J.

Yura, H. T.

M. Innocenzi, H. T. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833(1990).
[CrossRef]

Zaouter, Y.

Zewail, A. H.

A. H. Zewail, “4D ultrafast electron diffraction, crystallography, and microscopy,” Annu. Rev. Phys. Chem. 57, 65–103(2006).
[CrossRef]

Zhang, J.

H. Zhao, P. Wang, Z. Y. Wei, J. R. Tian, D. H. Li, Z. H. Wang, and J. Zhang, “Highly efficient and stable ring regenerative amplifier for chirped-pulse amplification at repetition rate 1 kHz,” Chin. Phys. Lett 24, 115–118 (2007).
[CrossRef]

Zhang, Q.

Zhang, X. R.

Z. Y. Zhang, R. Y. Chu, X. T. Zhou, J. H. Dai, X. H. Sun, M. R. Hoffman, and X. R. Zhang, “Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation,” Investig. Ophthalmol. Vis. Sci. 50, 2147–2153 (2009).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, R. Y. Chu, X. T. Zhou, J. H. Dai, X. H. Sun, M. R. Hoffman, and X. R. Zhang, “Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation,” Investig. Ophthalmol. Vis. Sci. 50, 2147–2153 (2009).
[CrossRef]

Zhao, H.

H. Zhao, P. Wang, Z. Y. Wei, J. R. Tian, D. H. Li, Z. H. Wang, and J. Zhang, “Highly efficient and stable ring regenerative amplifier for chirped-pulse amplification at repetition rate 1 kHz,” Chin. Phys. Lett 24, 115–118 (2007).
[CrossRef]

Zherebtsov, S.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Zhou, X. T.

Z. Y. Zhang, R. Y. Chu, X. T. Zhou, J. H. Dai, X. H. Sun, M. R. Hoffman, and X. R. Zhang, “Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation,” Investig. Ophthalmol. Vis. Sci. 50, 2147–2153 (2009).
[CrossRef]

Znakovskaya, I.

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

A. H. Zewail, “4D ultrafast electron diffraction, crystallography, and microscopy,” Annu. Rev. Phys. Chem. 57, 65–103(2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, and K. Torizuka, “Seven-terawatt Ti : sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond x-ray generation,” Appl. Phys. B 76, 497–503 (2003).
[CrossRef]

V. Yanovsky, C. Felix, and G. Mourou, “Why ring regenerative amplification (regen)?,” Appl. Phys. B 74, S181–S183(2002).
[CrossRef]

Appl. Phys. Lett. (1)

M. Innocenzi, H. T. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833(1990).
[CrossRef]

Chin. Phys. Lett (1)

H. Zhao, P. Wang, Z. Y. Wei, J. R. Tian, D. H. Li, Z. H. Wang, and J. Zhang, “Highly efficient and stable ring regenerative amplifier for chirped-pulse amplification at repetition rate 1 kHz,” Chin. Phys. Lett 24, 115–118 (2007).
[CrossRef]

Investig. Ophthalmol. Vis. Sci. (1)

Z. Y. Zhang, R. Y. Chu, X. T. Zhou, J. H. Dai, X. H. Sun, M. R. Hoffman, and X. R. Zhang, “Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation,” Investig. Ophthalmol. Vis. Sci. 50, 2147–2153 (2009).
[CrossRef]

J. Refract. Surg. (1)

G. Munoz, C. Albarran-Diego, H. F. Sakla, T. Ferrer-Blasco, and J. Javaloy, “Effects of LASIK on corneal endothelium using the 15-kHz IntraLase femtosecond laser,” J. Refract. Surg. 27, 672–676 (2011).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Nature (1)

G. Sansone, F. Kelkensberg, J. F. Perez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lepine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and M. J. J. Vrakking, “Electron localization following attosecond molecular photoionization,” Nature 465, 763–766 (2010).
[CrossRef]

Ophthalmology (1)

S. V. Patel, L. J. Maguire, J. W. McLaren, D. O. Hodge, and W. M. Bourne, “Femtosecond laser versus mechanical microkeratome for LASIK,” Ophthalmology 114, 1482–1490 (2007).
[CrossRef]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221(1985).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, and R. W. Falcone, “Multiterawatt, 100-fs laser,” Opt. Lett. 16, 1406–1408 (1991).
[CrossRef]

C. L. Blanc, G. Grillon, J. P. Chambaret, A. Migus, and A. Antonetti, “Compact and efficient multipass Ti:sapphire system for femtosecond chirped-pulse amplification at the terawatt level,” Opt. Lett. 18, 140–142 (1993).
[CrossRef]

K. Yamakawa and C. P. J. Barty, “Two-color chirped-pulse amplification in an ultrabroadband Ti:sapphire ring regenerative amplifier,” Opt. Lett. 28, 2402–2404 (2003).
[CrossRef]

H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, H. Okada, I. Daito, M. Suzuki, S. Kondo, K. Kondo, A. Sugiyama, P. R. Bolton, A. Yokoyama, H. Daido, S. Kawanishi, T. Kimura, and T. Tajima, “High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system,” Opt. Lett. 35, 1497–1499 (2010).
[CrossRef]

S. Ricaud, F. Druon, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorge, M. Delaigue, Y. Zaouter, A. Courjaud, P. Georges, and E. Mottay, “Short-pulse and high-repetition-rate diode-pumped Yb:CaF(2) regenerative amplifier,” Opt. Lett. 35, 2415–2417 (2010).
[CrossRef]

C. Liu, Z. Wang, W. Li, Q. Zhang, H. Han, H. Teng, and Z. Wei, “Contrast enhancement in a Ti:sapphire chirped-pulse amplification laser system with a noncollinear femtosecond optical-parametric amplifier,” Opt. Lett. 35, 3096–3098 (2010).
[CrossRef]

Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, and Z. Wei, “High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier,” Opt. Lett. 36, 3194–3196 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

Science (1)

E. Goulielmakis, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the ring regenerative amplifier system, a femtosecond Ti:sapphire laser oscillator, a stretcher, and a compressor are drawn in this figure.

Fig. 2.
Fig. 2.

Simulation of spot size in the cavity with different thermal focal length of Ti:sapphire crystal. The straight dashed lines show the internal elements’ positions.

Fig. 3.
Fig. 3.

Buildup process of amplification and the dumped amplified pulse from the ring regenerative amplifier. The function principle of double-gating PC is also sketched with a red dashed curve.

Fig. 4.
Fig. 4.

Spectra of seeding laser pulse (dashed curve), Q-switched amplified laser pulse (thin curve), and compressed laser pulse (thick curve). The inset shows transform-limited pulse duration of the amplified laser spectrum.

Fig. 5.
Fig. 5.

Interference autocorrelation trace of the pulses after the compressor.

Fig. 6.
Fig. 6.

Output energy extracted from the ring regenerative cavity as a function of pump energy.

Fig. 7.
Fig. 7.

Energy stability of the pulses after compressor over more than 11 h.

Fig. 8.
Fig. 8.

(a) Near-field and (b) far-field beam profiles and M2 factor of the compressed pulse.

Metrics