Abstract

The ring resonator is one of the key elements in the micro-optic gyro system, but there is not a uniform method for designing the parameters of a ring resonator, especially for its size. In this paper, an alternative method is presented for designing the ring resonator used in micro-optic gyro. Maximization of the resonator output is proposed to be the principle in design and optimization for the first time to our knowledge. The scale factor accuracy and the full range of the gyro system are taken into account to obtain the optimum diameter of the ring. A theoretical optimal diameter of 0.25 m is achieved for SiO2 waveguide resonator with a dynamic range of ±500°/s by analyzing the influence of resonator parameters on the output in detail, and the corresponding sensitivity of the gyro is less than 1.28°/h, which can meet the demands of a tactical inertia system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription