Abstract

The ring resonator is one of the key elements in the micro-optic gyro system, but there is not a uniform method for designing the parameters of a ring resonator, especially for its size. In this paper, an alternative method is presented for designing the ring resonator used in micro-optic gyro. Maximization of the resonator output is proposed to be the principle in design and optimization for the first time to our knowledge. The scale factor accuracy and the full range of the gyro system are taken into account to obtain the optimum diameter of the ring. A theoretical optimal diameter of 0.25 m is achieved for SiO2 waveguide resonator with a dynamic range of ±500°/s by analyzing the influence of resonator parameters on the output in detail, and the corresponding sensitivity of the gyro is less than 1.28°/h, which can meet the demands of a tactical inertia system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72(2000).
    [CrossRef]
  2. H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 80506 (2006).
    [CrossRef]
  3. H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011).
    [CrossRef]
  4. D. M. Shupe, “Fiber resonator gyroscope: sensitivity and thermal nonreciprocity,” Appl. Opt. 20, 286–289 (1981).
    [CrossRef]
  5. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, “Passive ring resonator method for sensitivity inertial rotation measurements in geophysics and relativity,” Opt. Lett. 6, 569–571 (1981).
    [CrossRef]
  6. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23, 3916–3924 (1984).
    [CrossRef]
  7. A. H. Rosenthal, “Regenerative circulatory multiple-beam interferometry for the study of light-propagation effects,” J. Opt. Soc. Am. 52, 1143–1147 (1962).
    [CrossRef]
  8. Y. Ohtsuka, “Analysis of a fiber-optic passive, loop-resonator gyroscope: dependence on resonator parameters and light-source coherence,” J. Lightwave Technol. LT-3, 378–384 (1985).
    [CrossRef]
  9. H. Ma, Z. Jin, C. Ding, and Y. Wang, “Influence of spectral linewidth of laser on resonance characteristics in fiber ring resonator,” Chin. J. Lasers 30, 731–734 (2003).
  10. A. Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control (Springer, 1998).
  11. H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Eur. Phys. Lett. 95, 64001 (2011).
    [CrossRef]
  12. X. Zhang, H. Ma, Z. Jin, and C. Ding, “Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,” Appl. Opt. 45, 7961–7965 (2006).
    [CrossRef]
  13. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
    [CrossRef]

2011 (3)

2006 (2)

X. Zhang, H. Ma, Z. Jin, and C. Ding, “Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,” Appl. Opt. 45, 7961–7965 (2006).
[CrossRef]

H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 80506 (2006).
[CrossRef]

2003 (1)

H. Ma, Z. Jin, C. Ding, and Y. Wang, “Influence of spectral linewidth of laser on resonance characteristics in fiber ring resonator,” Chin. J. Lasers 30, 731–734 (2003).

2000 (1)

1985 (1)

Y. Ohtsuka, “Analysis of a fiber-optic passive, loop-resonator gyroscope: dependence on resonator parameters and light-source coherence,” J. Lightwave Technol. LT-3, 378–384 (1985).
[CrossRef]

1984 (1)

1981 (2)

1962 (1)

Ding, C.

H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 80506 (2006).
[CrossRef]

X. Zhang, H. Ma, Z. Jin, and C. Ding, “Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,” Appl. Opt. 45, 7961–7965 (2006).
[CrossRef]

H. Ma, Z. Jin, C. Ding, and Y. Wang, “Influence of spectral linewidth of laser on resonance characteristics in fiber ring resonator,” Chin. J. Lasers 30, 731–734 (2003).

Ezekiel, S.

Feng, L.

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Eur. Phys. Lett. 95, 64001 (2011).
[CrossRef]

He, Z.

Higashiguchi, M.

Hong, L.

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Eur. Phys. Lett. 95, 64001 (2011).
[CrossRef]

Hotate, K.

Iwatsuki, K.

Jin, Z.

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
[CrossRef]

H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 80506 (2006).
[CrossRef]

X. Zhang, H. Ma, Z. Jin, and C. Ding, “Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,” Appl. Opt. 45, 7961–7965 (2006).
[CrossRef]

H. Ma, Z. Jin, C. Ding, and Y. Wang, “Influence of spectral linewidth of laser on resonance characteristics in fiber ring resonator,” Chin. J. Lasers 30, 731–734 (2003).

Lawrence, A.

A. Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control (Springer, 1998).

Lei, M.

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Eur. Phys. Lett. 95, 64001 (2011).
[CrossRef]

Ma, H.

Mao, H.

Ohtsuka, Y.

Y. Ohtsuka, “Analysis of a fiber-optic passive, loop-resonator gyroscope: dependence on resonator parameters and light-source coherence,” J. Lightwave Technol. LT-3, 378–384 (1985).
[CrossRef]

Prentiss, M. G.

Rosenthal, A. H.

Sanders, G. A.

Shupe, D. M.

Suzuki, K.

Takiguchi, K.

Wang, Y.

H. Ma, Z. Jin, C. Ding, and Y. Wang, “Influence of spectral linewidth of laser on resonance characteristics in fiber ring resonator,” Chin. J. Lasers 30, 731–734 (2003).

Yu, H.

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Eur. Phys. Lett. 95, 64001 (2011).
[CrossRef]

Zhang, C.

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Eur. Phys. Lett. 95, 64001 (2011).
[CrossRef]

Zhang, X.

X. Zhang, H. Ma, Z. Jin, and C. Ding, “Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,” Appl. Opt. 45, 7961–7965 (2006).
[CrossRef]

H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 80506 (2006).
[CrossRef]

Appl. Opt. (3)

Chin. J. Lasers (1)

H. Ma, Z. Jin, C. Ding, and Y. Wang, “Influence of spectral linewidth of laser on resonance characteristics in fiber ring resonator,” Chin. J. Lasers 30, 731–734 (2003).

Eur. Phys. Lett. (1)

H. Yu, C. Zhang, L. Feng, L. Hong, and M. Lei, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Eur. Phys. Lett. 95, 64001 (2011).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 80506 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

A. Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control (Springer, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Common configuration of ring resonator used in RMOG. D, diameter; κ, cross-port coupling coefficient of the resonator coupler; Iin, input light intensity; Iout, output light intensity. Here, D and κ are the major two parameters that influence the characteristics of the resonator.

Fig. 2.
Fig. 2.

(a) Resonance curve of resonator with parameters of Table 1. FWHM is the full width at half maximum. (b) Slope of the resonance curve. (c) Nonlinearity of the resonance curve.

Fig. 3.
Fig. 3.

(a) Modulation technique of the RMOG. (b) Influence of modulation frequency fm on ΔI. (The calculated parameters are listed in Table 1.)

Fig. 4.
Fig. 4.

Influence of D and κ on the slope of resonance curve K. (a) Slope of resonance curve with different κ(D=0.04m). (b) Relationship between Kmax and κ(D=0.04m). (c) Slope of resonance curve with different D(κ=0.05). (d) Relationship between Kmax and D, where for each point, κ has been optimized for maximum K.

Fig. 5.
Fig. 5.

(a) Calculated ΔI (solid curve) and full range of RMOG (blue dashed curve) versus D. Dashed horizontal line: full range is 500°/s. (b) Detailed distribution of ΔI near the full range of 500°/s. (c) Resonance curve of the optimum resonator with D=0.25m and κ=0.14.

Fig. 6.
Fig. 6.

Calculated ΔI (solid curve) and sensitivity (dashed curves) versus (a) diameter D and (b) cross-port coupling coefficient κ for D=0.04m. A, B, and C are for Eqs. (12)–(14), respectively.

Tables (2)

Tables Icon

Table 1. Parameters for the SiO2/SiO2:Ge/SiO2 Waveguide Resonator

Tables Icon

Table 2. Characteristics of the Optimum Resonator and the Resonator in Reference

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δf=4AneffλLΩ,
Tfrr=IoutIin=T22TRcos(2πτf)M1+Q22Qcos(2πτf),
M=2TRQ+(R)21(Q)2·(1Q2),
{T=(1κ)(1αc)R=κ(1αc)1αLQ=(1αL)(1κ)(1αc)R=Rexp(πΔf0τ)Q=Qexp(πΔf0τ),
K=dTfrrdf|fn=Tfrr(fn)Tfrr(fn1)fnfn1=(M2TRcos(2πτfn)1+Q22Qcos(2πτfn)M2TRcos(2πτfn1)1+Q22Qcos(2πτfn1))/(fnfn1),
σ=||K|max|K||max|K|.
ΔI=Iin·ΔTfrrIin·Kmax·Δf.
ΔIIin·KmaxDneffλ·Ω.
ΔI=ΔIIin·ΩfullKmaxDneffλ,
Ωfull=Ω|σ=1000ppm.
ΔI=ΔIIin·Ωfull=±Iin·(Tfrr|ΔffmTfrr|Δf+fm)Iin·Ωfull=±1Ωfull·(2TRcos[2πτ(Δf+fm)]+M1+Q22Qcos[2πτ(Δf+fm)]2TRcos[2πτ(Δffm)]+M1+Q22Qcos[2πτ(Δffm)]).
δΩλL4A·2ΓSNR,
δΩλL4A·2Γ(Nphηt)1/2,
δΩ=334Aπ·NcλFρL2[(12/3ρ)ωηI0Γ]1/2,

Metrics