Abstract

This paper presents a thorough discussion of the proposed field-programmable gate array (FPGA) implementation for fringe pattern demodulation using the one-dimensional continuous wavelet transform (1D-CWT) algorithm. This algorithm is also known as wavelet transform profilometry. Initially, the 1D-CWT is programmed using the C programming language and compiled into VHDL using the ImpulseC tool. This VHDL code is implemented on the Altera Cyclone IV GX EP4CGX150DF31C7 FPGA. A fringe pattern image with a size of 512×512 pixels is presented to the FPGA, which processes the image using the 1D-CWT algorithm. The FPGA requires approximately 100 ms to process the image and produce a wrapped phase map. For performance comparison purposes, the 1D-CWT algorithm is programmed using the C language. The C code is then compiled using the Intel compiler version 13.0. The compiled code is run on a Dell Precision state-of-the-art workstation. The time required to process the fringe pattern image is approximately 1 s. In order to further reduce the execution time, the 1D-CWT is reprogramed using Intel Integrated Primitive Performance (IPP) Library Version 7.1. The execution time was reduced to approximately 650 ms. This confirms that at least sixfold speedup was gained using FPGA implementation over a state-of-the-art workstation that executes heavily optimized implementation of the 1D-CWT algorithm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Lilley, M. Lalor, and D. Burton, “Robust fringe analysis system for human body shape measurement,” Opt. Eng. 39, 187–195 (2000).
    [CrossRef]
  2. P. Hariharan, “Applications of interferogram analysis,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson and G. T. Reid, eds. (Institute of Physics, 1993), pp. 262–284.
  3. K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson and G. T. Reid, eds. (Institute of Physics, 1993), pp. 94–140.
  4. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  5. K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
    [CrossRef]
  6. M. Gdeisat, M. Lalor, and D. Burton, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).
    [CrossRef]
  7. J. Zhong and J. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry,” Appl. Opt. 43, 4993–4998 (2004).
    [CrossRef]
  8. M. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. J. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).
    [CrossRef]
  9. A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).
    [CrossRef]
  10. A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial fringe pattern analysis using the modified Morlet wavelet transform,” Proc. SPIE 7000, 70000Q (2008).
    [CrossRef]
  11. M. Gdeisat and F. Lilley, “Fringe pattern analysis using wavelet transforms and phase demodulation using wavelet transform,” http://www.ljmu.ac.uk/GERI/79684.htm .
  12. T. Y. Qassim, T. Cutmore, D. James, and D. Rowlands, “FPGA implementation of Morlet continuous wavelet transform for EEG analysis,” in Proceedings of International Conference on Computer and Communication Engineering (ICCCE 2012) (IEEE, 2012), pp. 59–64.
  13. “Impulse Accelerated Technologies,” www.impulseaccelerated.com .
  14. “Cyclone IV GX FPGA Development kit,” http://www.altera.com/products/devkits/altera/kit-cyclone-iv-gx.html .

2009 (1)

M. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. J. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).
[CrossRef]

2008 (1)

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial fringe pattern analysis using the modified Morlet wavelet transform,” Proc. SPIE 7000, 70000Q (2008).
[CrossRef]

2007 (2)

K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).
[CrossRef]

2006 (1)

2004 (1)

2000 (1)

F. Lilley, M. Lalor, and D. Burton, “Robust fringe analysis system for human body shape measurement,” Opt. Eng. 39, 187–195 (2000).
[CrossRef]

1982 (1)

Abid, A.

M. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. J. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).
[CrossRef]

Abid, A. Z.

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial fringe pattern analysis using the modified Morlet wavelet transform,” Proc. SPIE 7000, 70000Q (2008).
[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).
[CrossRef]

Burton, D.

M. Gdeisat, M. Lalor, and D. Burton, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).
[CrossRef]

F. Lilley, M. Lalor, and D. Burton, “Robust fringe analysis system for human body shape measurement,” Opt. Eng. 39, 187–195 (2000).
[CrossRef]

Burton, D. R.

M. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. J. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).
[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial fringe pattern analysis using the modified Morlet wavelet transform,” Proc. SPIE 7000, 70000Q (2008).
[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).
[CrossRef]

Creath, K.

K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson and G. T. Reid, eds. (Institute of Physics, 1993), pp. 94–140.

Cutmore, T.

T. Y. Qassim, T. Cutmore, D. James, and D. Rowlands, “FPGA implementation of Morlet continuous wavelet transform for EEG analysis,” in Proceedings of International Conference on Computer and Communication Engineering (ICCCE 2012) (IEEE, 2012), pp. 59–64.

Gdeisat, M.

M. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. J. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).
[CrossRef]

M. Gdeisat, M. Lalor, and D. Burton, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).
[CrossRef]

Gdeisat, M. A.

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial fringe pattern analysis using the modified Morlet wavelet transform,” Proc. SPIE 7000, 70000Q (2008).
[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).
[CrossRef]

Hariharan, P.

P. Hariharan, “Applications of interferogram analysis,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson and G. T. Reid, eds. (Institute of Physics, 1993), pp. 262–284.

Ina, H.

James, D.

T. Y. Qassim, T. Cutmore, D. James, and D. Rowlands, “FPGA implementation of Morlet continuous wavelet transform for EEG analysis,” in Proceedings of International Conference on Computer and Communication Engineering (ICCCE 2012) (IEEE, 2012), pp. 59–64.

Kobayashi, S.

Lalor, M.

M. Gdeisat, M. Lalor, and D. Burton, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).
[CrossRef]

F. Lilley, M. Lalor, and D. Burton, “Robust fringe analysis system for human body shape measurement,” Opt. Eng. 39, 187–195 (2000).
[CrossRef]

Lalor, M. J.

M. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. J. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).
[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial fringe pattern analysis using the modified Morlet wavelet transform,” Proc. SPIE 7000, 70000Q (2008).
[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).
[CrossRef]

Lilley, F.

M. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. J. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).
[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).
[CrossRef]

F. Lilley, M. Lalor, and D. Burton, “Robust fringe analysis system for human body shape measurement,” Opt. Eng. 39, 187–195 (2000).
[CrossRef]

Moore, C. J.

M. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. J. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).
[CrossRef]

Qassim, T. Y.

T. Y. Qassim, T. Cutmore, D. James, and D. Rowlands, “FPGA implementation of Morlet continuous wavelet transform for EEG analysis,” in Proceedings of International Conference on Computer and Communication Engineering (ICCCE 2012) (IEEE, 2012), pp. 59–64.

Qian, K.

K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
[CrossRef]

Qudeisat, M.

M. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. J. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).
[CrossRef]

Rowlands, D.

T. Y. Qassim, T. Cutmore, D. James, and D. Rowlands, “FPGA implementation of Morlet continuous wavelet transform for EEG analysis,” in Proceedings of International Conference on Computer and Communication Engineering (ICCCE 2012) (IEEE, 2012), pp. 59–64.

Takeda, M.

Weng, J.

Zhong, J.

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

F. Lilley, M. Lalor, and D. Burton, “Robust fringe analysis system for human body shape measurement,” Opt. Eng. 39, 187–195 (2000).
[CrossRef]

Opt. Lasers Eng. (2)

K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317 (2007).
[CrossRef]

M. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. J. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).
[CrossRef]

Proc. SPIE (1)

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial fringe pattern analysis using the modified Morlet wavelet transform,” Proc. SPIE 7000, 70000Q (2008).
[CrossRef]

Other (6)

M. Gdeisat and F. Lilley, “Fringe pattern analysis using wavelet transforms and phase demodulation using wavelet transform,” http://www.ljmu.ac.uk/GERI/79684.htm .

T. Y. Qassim, T. Cutmore, D. James, and D. Rowlands, “FPGA implementation of Morlet continuous wavelet transform for EEG analysis,” in Proceedings of International Conference on Computer and Communication Engineering (ICCCE 2012) (IEEE, 2012), pp. 59–64.

“Impulse Accelerated Technologies,” www.impulseaccelerated.com .

“Cyclone IV GX FPGA Development kit,” http://www.altera.com/products/devkits/altera/kit-cyclone-iv-gx.html .

P. Hariharan, “Applications of interferogram analysis,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson and G. T. Reid, eds. (Institute of Physics, 1993), pp. 262–284.

K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, W. R. Robinson and G. T. Reid, eds. (Institute of Physics, 1993), pp. 94–140.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Altera Cyclone IV GX FPGA development board.

Fig. 2.
Fig. 2.

Real fringe pattern image taken for the thorax area of a female mannequin.

Fig. 3.
Fig. 3.

FPGA system design.

Fig. 4.
Fig. 4.

FPGA generated wrapped phase image.

Fig. 5.
Fig. 5.

RTL schematic design of the FPGA.

Fig. 6.
Fig. 6.

FPGA design footprint on the FPGA die.

Fig. 7.
Fig. 7.

Summary of the FPGA design produced by Quartus II.

Metrics