Abstract

The spectral shift due to temperature in the photonic bandgap (PBG) of an all-solid PBG fiber is investigated, aiming at discrete and distributed temperature sensing. A temperature rise induces a red shift in the bandgap spectra, which can be easily and precisely monitored by measuring the fiber transmission near one of the band edges. Two different situations that are potentially compatible with distributed and quasi-distributed sensing were investigated: heating a 2 m section of a longer (10m) fiber, and heating the whole extension of a fiber that is tens of centimeters in length and was spliced to conventional fibers on both sides. The latter setup yielded bandgap spectral shifts up to 35pm/°C. Aiming at discrete sensing, a short (50mm) fiber section was subjected to a tight bend so as to exhibit increased temperature sensitivity. Choosing the position of the bend allows for reconfiguration, on demand, of the sensor. A semi-analytical method to identify the spectral position of bandgaps was used to model the fiber transmission, as well as the bandgap shift with temperature, with consistent results.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nakstad and J. T. Kringlebotn, “Oil and gas applications probing oil fields,” Nat. Photonics 2, 147–149 (2008).
    [CrossRef]
  2. R. Willsch, W. Ecke, and H. Bartelt, “Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering,” in Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 49–54.
  3. P. E. Sanders, “Fiber-optic sensors: playing both sides of the energy equation,” Opt. Photonics News 22(1), 36–42 (2011).
    [CrossRef]
  4. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
    [CrossRef]
  5. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
    [CrossRef]
  6. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
    [CrossRef]
  7. R. Bernini, A. Minardo, and L. Zeni, “Distributed optical fiber sensors,” in An Introduction to Optoelectronic Sensors, Vol. 7 of Series in Optics and Photonics (World Scientific Publishing Company, 2009), pp. 77–94.
  8. R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772–3776 (1997).
    [CrossRef]
  9. M. A. Soto, G. Bolognini, and F. D. Pasquale, “Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors,” Opt. Express 16, 19097–19111 (2008).
    [CrossRef]
  10. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
    [CrossRef]
  11. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  12. J. C. Knight, J. Broeng, T. A. Birks, and P. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef]
  13. Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
    [CrossRef]
  14. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261–2264 (2006).
    [CrossRef]
  15. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
    [CrossRef]
  16. L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17, 3754–3764 (2009).
    [CrossRef]
  17. N. M. Litchnitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81, 347–351 (2005).
    [CrossRef]
  18. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
    [CrossRef]
  19. S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
    [CrossRef]
  20. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Mode-beating-enabled stopband narrowing in all-solid photonic bandgap fiber and sensing applications,” Opt. Express 19, 8167–8172 (2011).
    [CrossRef]
  21. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14, 9483–9490 (2006).
    [CrossRef]
  22. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
    [CrossRef]
  23. A. S. Huang, Y. Arie, C. C. Neil, and J. M. Hammer, “Study of refractive index of GeO2:SiO2 mixtures using deposited-thin-film optical waveguides,” Appl. Opt. 24, 4404–4407 (1985).
    [CrossRef]
  24. M. Bass, Handbook of Optics Volume II Devices, Measurements and Properties, 2nd ed. (McGraw-Hill, 1995).
  25. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13, 2503–2511 (2005).
    [CrossRef]
  26. G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
    [CrossRef]
  27. T. Mizunami, T. Fukuda, and A. Hayash, “Fabrication and characterization of long-period-grating temperature sensors using Ge-B-codoped photosensitive fibre and single-mode fibre,” Meas. Sci. Technol. 15, 1467–1473 (2004).
    [CrossRef]

2011

P. E. Sanders, “Fiber-optic sensors: playing both sides of the energy equation,” Opt. Photonics News 22(1), 36–42 (2011).
[CrossRef]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Mode-beating-enabled stopband narrowing in all-solid photonic bandgap fiber and sensing applications,” Opt. Express 19, 8167–8172 (2011).
[CrossRef]

2009

L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17, 3754–3764 (2009).
[CrossRef]

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

2008

Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
[CrossRef]

H. Nakstad and J. T. Kringlebotn, “Oil and gas applications probing oil fields,” Nat. Photonics 2, 147–149 (2008).
[CrossRef]

M. A. Soto, G. Bolognini, and F. D. Pasquale, “Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors,” Opt. Express 16, 19097–19111 (2008).
[CrossRef]

2006

2005

N. M. Litchnitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81, 347–351 (2005).
[CrossRef]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13, 2503–2511 (2005).
[CrossRef]

2004

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[CrossRef]

T. Mizunami, T. Fukuda, and A. Hayash, “Fabrication and characterization of long-period-grating temperature sensors using Ge-B-codoped photosensitive fibre and single-mode fibre,” Meas. Sci. Technol. 15, 1467–1473 (2004).
[CrossRef]

1998

J. C. Knight, J. Broeng, T. A. Birks, and P. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

1997

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772–3776 (1997).
[CrossRef]

1995

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

1994

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

1985

A. S. Huang, Y. Arie, C. C. Neil, and J. M. Hammer, “Study of refractive index of GeO2:SiO2 mixtures using deposited-thin-film optical waveguides,” Appl. Opt. 24, 4404–4407 (1985).
[CrossRef]

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Alkeskjold, T. T.

Araújo, F. M.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Aref, S. H.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Argyros, A.

Arie, Y.

Ballato, J.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Bao, X.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Bartelt, H.

R. Willsch, W. Ecke, and H. Bartelt, “Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering,” in Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 49–54.

Bernini, R.

R. Bernini, A. Minardo, and L. Zeni, “Distributed optical fiber sensors,” in An Introduction to Optoelectronic Sensors, Vol. 7 of Series in Optics and Photonics (World Scientific Publishing Company, 2009), pp. 77–94.

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Bird, D. M.

Birks, T. A.

Bjarklev, A.

Bolognini, G.

Broeng, J.

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Cordeiro, C. M. B.

Czapla, A.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
[CrossRef]

Dabrowski, R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
[CrossRef]

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Deng, Y.

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Domanski, A. W.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
[CrossRef]

Dong, X.

Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Ecke, W.

R. Willsch, W. Ecke, and H. Bartelt, “Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering,” in Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 49–54.

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Ertman, S.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
[CrossRef]

Eskildsen, L.

Farahi, F.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Farhadiroushan, M.

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772–3776 (1997).
[CrossRef]

Feced, R.

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772–3776 (1997).
[CrossRef]

Ferreira, L. A.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Foy, P.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Frazão, O.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Fukuda, T.

T. Mizunami, T. Fukuda, and A. Hayash, “Fabrication and characterization of long-period-grating temperature sensors using Ge-B-codoped photosensitive fibre and single-mode fibre,” Meas. Sci. Technol. 15, 1467–1473 (2004).
[CrossRef]

Gauza, S.

Geng, Y.

George, A. K.

Ghosh, G.

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[CrossRef]

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Hammer, J. M.

Handerek, V. A.

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772–3776 (1997).
[CrossRef]

Hawkins, T.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Hayash, A.

T. Mizunami, T. Fukuda, and A. Hayash, “Fabrication and characterization of long-period-grating temperature sensors using Ge-B-codoped photosensitive fibre and single-mode fibre,” Meas. Sci. Technol. 15, 1467–1473 (2004).
[CrossRef]

Hedley, T. D.

Her, T.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Hermann, D. S.

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Hu, J. J.

Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Huang, A. S.

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Jackson, D. A.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Jin, L.

Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Kai, G.

Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Knight, J. C.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

Kringlebotn, J. T.

H. Nakstad and J. T. Kringlebotn, “Oil and gas applications probing oil fields,” Nat. Photonics 2, 147–149 (2008).
[CrossRef]

Lægsgaard, J.

Latifi, H.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Leon-Saval, S. G.

Li, J.

Li, X.

Litchnitser, N. M.

N. M. Litchnitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81, 347–351 (2005).
[CrossRef]

Liu, Z.

Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Luan, F.

Lv, F.

Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Minardo, A.

R. Bernini, A. Minardo, and L. Zeni, “Distributed optical fiber sensors,” in An Introduction to Optoelectronic Sensors, Vol. 7 of Series in Optics and Photonics (World Scientific Publishing Company, 2009), pp. 77–94.

Mizunami, T.

T. Mizunami, T. Fukuda, and A. Hayash, “Fabrication and characterization of long-period-grating temperature sensors using Ge-B-codoped photosensitive fibre and single-mode fibre,” Meas. Sci. Technol. 15, 1467–1473 (2004).
[CrossRef]

Nakstad, H.

H. Nakstad and J. T. Kringlebotn, “Oil and gas applications probing oil fields,” Nat. Photonics 2, 147–149 (2008).
[CrossRef]

Neil, C. C.

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
[CrossRef]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Pasquale, F. D.

Pearce, G. J.

Poliakov, E.

N. M. Litchnitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81, 347–351 (2005).
[CrossRef]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Rogers, A. J.

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772–3776 (1997).
[CrossRef]

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Russell, P.

P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

Russell, P. St. J.

Sanders, P. E.

P. E. Sanders, “Fiber-optic sensors: playing both sides of the energy equation,” Opt. Photonics News 22(1), 36–42 (2011).
[CrossRef]

Santos, J. L.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Scolari, L.

Shi, Q.

Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Soto, M. A.

Tan, X.

Tefelska, M.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
[CrossRef]

Webb, D. J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Whang, Z.

Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

Willsch, R.

R. Willsch, W. Ecke, and H. Bartelt, “Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering,” in Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 49–54.

Wojcik, J.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
[CrossRef]

Wu, S.-T.

Xianyu, H.

Yu, Y.

Zeni, L.

R. Bernini, A. Minardo, and L. Zeni, “Distributed optical fiber sensors,” in An Introduction to Optoelectronic Sensors, Vol. 7 of Series in Optics and Photonics (World Scientific Publishing Company, 2009), pp. 77–94.

Zhai, L.

Appl. Opt.

Appl. Phys. B

N. M. Litchnitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81, 347–351 (2005).
[CrossRef]

Electron. Lett.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

IEEE Photon. Technol. Lett.

S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009).
[CrossRef]

Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008).
[CrossRef]

IEEE Trans. Instrum. Meas.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008).
[CrossRef]

J. Lightwave Technol.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[CrossRef]

J. Non-Cryst. Solids

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995).
[CrossRef]

Meas. Sci. Technol.

T. Mizunami, T. Fukuda, and A. Hayash, “Fabrication and characterization of long-period-grating temperature sensors using Ge-B-codoped photosensitive fibre and single-mode fibre,” Meas. Sci. Technol. 15, 1467–1473 (2004).
[CrossRef]

Nat. Photonics

H. Nakstad and J. T. Kringlebotn, “Oil and gas applications probing oil fields,” Nat. Photonics 2, 147–149 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photonics News

P. E. Sanders, “Fiber-optic sensors: playing both sides of the energy equation,” Opt. Photonics News 22(1), 36–42 (2011).
[CrossRef]

Rev. Sci. Instrum.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772–3776 (1997).
[CrossRef]

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

Sensors

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Other

R. Bernini, A. Minardo, and L. Zeni, “Distributed optical fiber sensors,” in An Introduction to Optoelectronic Sensors, Vol. 7 of Series in Optics and Photonics (World Scientific Publishing Company, 2009), pp. 77–94.

R. Willsch, W. Ecke, and H. Bartelt, “Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering,” in Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 49–54.

M. Bass, Handbook of Optics Volume II Devices, Measurements and Properties, 2nd ed. (McGraw-Hill, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

AS-PBG fiber microscopy image. Inset: radial refractive index contrast profile (in linear scale) of a high-index rod.

Fig. 2.
Fig. 2.

Calculated band structure in the cladding of the AS-PBG fiber (left axis) and measured fiber transmission spectrum (right axis).

Fig. 3.
Fig. 3.

AS-PBG fiber transmission spectrum for different single-turn coil radii (total fiber length fixed at 40 cm).

Fig. 4.
Fig. 4.

Experimental setups used to characterize the temperature sensitivity of the AS-PBG fiber. In case (A), the whole fiber length is heated inside an oven, in (B) a 2 m section of a 10 m long fiber is heated on a hotplate, and in (C) a 50 mm section of a 10 m long fiber is heated under a tight bend.

Fig. 5.
Fig. 5.

Fiber normalized transmission spectrum for different temperatures when the full length (50 cm) of an AS-PBG fiber is heated. Inset: bandgap edge position at fixed transmission levels (indicated in the legend) as temperature function and linear fitting curves.

Fig. 6.
Fig. 6.

Transmission power variation at fixed wavelengths as a function of temperature.

Fig. 7.
Fig. 7.

Calculated (solid line) and measured (diamonds and circles) spectral shifts with temperature in the 900–1135 nm bandgap.

Fig. 8.
Fig. 8.

Transmission spectra for different temperatures when a 2 m section of a 10 m AS-PBG fiber is heated.

Fig. 9.
Fig. 9.

Fiber transmission for different temperatures when a single-turn coil with a 8 mm radius is heated.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

nhi=xnGeO2+(1x)nSiO2,

Metrics