Abstract

We report absolute frequency measurements on the a1, a10, and a15 hyperfine components of the R(78) 4–6 line of I2127. An external-cavity diode laser system at 671 nm is frequency-stabilized to the saturated absorption center obtained by modulation transfer spectroscopy in an iodine vapor cell. Its absolute frequency is measured by an optical frequency comb. The effect of pressure shift is investigated to obtain the absolute transition frequency at zero pressure. Our determination of the line centers reaches a precision of better than 40 kHz and will provide useful input for theoretical calculations. This frequency-stabilized laser can be used as a reference laser for the spectroscopy of lithium D lines.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?,” Opt. Commun. 74, 87–92 (1989).
    [CrossRef]
  2. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [CrossRef]
  3. H. C. Chui, M. S. Ko, Y.-W. Liu, J.-T. Shy, J. L. Peng, and H. Ahn, “Absolute frequency measurement of rubidium 5S–7S two-photon transitions with a femtosecond laser comb,” Opt. Lett. 30, 842–844 (2005).
    [CrossRef]
  4. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [CrossRef]
  5. P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S31→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
    [CrossRef]
  6. A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
    [CrossRef]
  7. C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of I2127 at 5145 Å: a test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20, 254–268 (1979).
    [CrossRef]
  8. W.-Y. Cheng, L. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
    [CrossRef]
  9. S. L. Cornish, Y.-W. Liu, I. C. Lane, P. E. G. Baird, G. P. Barwood, P. Taylor, and W. R. C. Rowley, “Interferometric measurements of I2127 reference frequencies for 1S–2S spectroscopy in muonium, hydrogen, and deuterium,” J. Opt. Soc. Am. B 17, 6–10 (2000).
    [CrossRef]
  10. Y.-C. Hsiao, C.-Y. Kao, H.-C. Chen, S.-E. Chen, J.-L. Peng, and L.-B. Wang, “Absolute frequency measurement of the molecular iodine hyperfine transitions at 548 nm,” J. Opt. Soc. Am. B 30, 328–332 (2013).
    [CrossRef]
  11. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
    [CrossRef]
  12. R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
    [CrossRef]
  13. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14000 cm−1–15600  cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).
  14. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14800 cm−1–20000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).
  15. S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule de l’iode 11000 cm−1–14000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).
  16. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 19700 cm−1–20035 cm−1 (Laboratoire Aimé Cotton CNRS II, 1983).
  17. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14800–20000 cm−1 Complément : Identification des transitions du systéme (B–X) assignments of the (B(I2)–X) iodine lines (Laboratoire Aimé Cotton CNRS II, 1986).
  18. S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule de l’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).
  19. H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).
  20. “IodineSpec5,” http://www.iqo.uni-hannover.de .
  21. E. J. Salumbides, K. S. E. Eikema, W. Ubachsm, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine structure of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Mol. Phys. 104, 2641–2652 (2006).
    [CrossRef]
  22. H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
    [CrossRef]
  23. E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
    [CrossRef]
  24. Z.-C. Yan, W. Nörtershäuser, and G. W. F. Drake, “High precision atomic theory for Li and Be+: QED shifts and isotope shifts,” Phys. Rev. Lett. 100, 243002 (2008).
    [CrossRef]
  25. J. H. Shirley, “Modulation transfer process in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
    [CrossRef]
  26. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  27. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [CrossRef]
  28. L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
    [CrossRef]
  29. C.-C. Liao, K.-Y. Wu, Y.-H. Lien, H. Knöckel, H.-C. Chui, E. Tiemann, and J.-T. Shy, “Precise frequency measurements of I2127 lines in the wavelength region 750–780 nm,” J. Opt. Soc. Am. B 27, 1208–1214 (2010).
    [CrossRef]

2013 (1)

2010 (1)

2008 (2)

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

Z.-C. Yan, W. Nörtershäuser, and G. W. F. Drake, “High precision atomic theory for Li and Be+: QED shifts and isotope shifts,” Phys. Rev. Lett. 100, 243002 (2008).
[CrossRef]

2007 (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

2006 (1)

E. J. Salumbides, K. S. E. Eikema, W. Ubachsm, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine structure of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

2005 (2)

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[CrossRef]

H. C. Chui, M. S. Ko, Y.-W. Liu, J.-T. Shy, J. L. Peng, and H. Ahn, “Absolute frequency measurement of rubidium 5S–7S two-photon transitions with a femtosecond laser comb,” Opt. Lett. 30, 842–844 (2005).
[CrossRef]

2004 (2)

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S31→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

2003 (1)

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

2002 (2)

2001 (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

2000 (1)

1998 (1)

A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
[CrossRef]

1989 (1)

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?,” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1982 (1)

1979 (1)

C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of I2127 at 5145 Å: a test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20, 254–268 (1979).
[CrossRef]

1936 (1)

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Ahn, H.

Baba, M.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Baird, P. E. G.

Barwood, G. P.

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

Bodermann, B.

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

Bordé, C. J.

C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of I2127 at 5145 Å: a test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20, 254–268 (1979).
[CrossRef]

Camy, G.

C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of I2127 at 5145 Å: a test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20, 254–268 (1979).
[CrossRef]

Cancio Pastor, P.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S31→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Chartier, J.-M.

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?,” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Chen, H.-C.

Chen, L.

Chen, S.-E.

Cheng, W.-Y.

Chevillard, J.

S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule de l’iode 11000 cm−1–14000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).

Chui, H. C.

Chui, H.-C.

Cornish, S. L.

de Mauro, C.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S31→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

De Natale, P.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S31→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Decomps, B.

C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of I2127 at 5145 Å: a test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20, 254–268 (1979).
[CrossRef]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

Drake, G. W. F.

Z.-C. Yan, W. Nörtershäuser, and G. W. F. Drake, “High precision atomic theory for Li and Be+: QED shifts and isotope shifts,” Phys. Rev. Lett. 100, 243002 (2008).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Eikema, K. S. E.

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachsm, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine structure of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

Felder, R.

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fraser, L. H. D.

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Fredin-Picard, S.

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?,” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Fujita, N.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Fujiwara, C.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14000 cm−1–15600  cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14800 cm−1–20000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 19700 cm−1–20035 cm−1 (Laboratoire Aimé Cotton CNRS II, 1983).

S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule de l’iode 11000 cm−1–14000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14800–20000 cm−1 Complément : Identification des transitions du systéme (B–X) assignments of the (B(I2)–X) iodine lines (Laboratoire Aimé Cotton CNRS II, 1986).

S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule de l’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).

Gillespie, L. J.

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Giusfredi, G.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S31→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Gross, B.

A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
[CrossRef]

Hagel, G.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S31→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Hall, J. L.

W.-Y. Cheng, L. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef]

A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
[CrossRef]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

Hollenstein, U.

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachsm, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine structure of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hsiao, Y.-C.

Huber, A.

A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
[CrossRef]

Ikeuchi, M.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Inguscio, M.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S31→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Ishikawa, K.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Kabir, M. H.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Kao, C.-Y.

Kasahara, S.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Katô, H.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Kimura, Y.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Knöckel, H.

C.-C. Liao, K.-Y. Wu, Y.-H. Lien, H. Knöckel, H.-C. Chui, E. Tiemann, and J.-T. Shy, “Precise frequency measurements of I2127 lines in the wavelength region 750–780 nm,” J. Opt. Soc. Am. B 27, 1208–1214 (2010).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachsm, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine structure of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

Ko, M. S.

Kourogi, M.

A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kuwano, H.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Lane, I. C.

Liao, C.-C.

Lien, Y.-H.

Liu, Y.-W.

Luc, P.

S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule de l’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14800–20000 cm−1 Complément : Identification des transitions du systéme (B–X) assignments of the (B(I2)–X) iodine lines (Laboratoire Aimé Cotton CNRS II, 1986).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 19700 cm−1–20035 cm−1 (Laboratoire Aimé Cotton CNRS II, 1983).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14800 cm−1–20000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14000 cm−1–15600  cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).

Matsunobu, Y.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

Misono, M.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Nörtershäuser, W.

Z.-C. Yan, W. Nörtershäuser, and G. W. F. Drake, “High precision atomic theory for Li and Be+: QED shifts and isotope shifts,” Phys. Rev. Lett. 100, 243002 (2008).
[CrossRef]

O’Reilly, J.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Pachucki, K.

A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
[CrossRef]

Peng, J. L.

Peng, J.-L.

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

Reichert, J.

A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
[CrossRef]

Robertsson, L.

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?,” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Rowley, W. R. C.

Salumbides, E. J.

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachsm, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine structure of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

Shimamoto, T.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Shinano, T.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Shirley, J. H.

Shy, J.-T.

Takahashi, R.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Taylor, P.

Tiemann, E.

C.-C. Liao, K.-Y. Wu, Y.-H. Lien, H. Knöckel, H.-C. Chui, E. Tiemann, and J.-T. Shy, “Precise frequency measurements of I2127 lines in the wavelength region 750–780 nm,” J. Opt. Soc. Am. B 27, 1208–1214 (2010).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachsm, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine structure of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

Ubachs, W.

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

Ubachsm, W.

E. J. Salumbides, K. S. E. Eikema, W. Ubachsm, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine structure of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef]

A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
[CrossRef]

Ushino, M.

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

Verges, J.

S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule de l’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).

S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule de l’iode 11000 cm−1–14000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).

Wang, L.-B.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Weitz, M.

A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
[CrossRef]

Wu, K.-Y.

Yan, Z.-C.

Z.-C. Yan, W. Nörtershäuser, and G. W. F. Drake, “High precision atomic theory for Li and Be+: QED shifts and isotope shifts,” Phys. Rev. Lett. 100, 243002 (2008).
[CrossRef]

Ye, J.

Yoon, T. H.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Eur. Phys. J. D (2)

H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004).
[CrossRef]

E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Eur. Phys. J. D 47, 171–179 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

J. Opt. Soc. Am. B (3)

Metrologia (2)

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005).
[CrossRef]

Mol. Phys. (1)

E. J. Salumbides, K. S. E. Eikema, W. Ubachsm, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine structure of I2129 and I127I129 in the BΠ0+u3−XlΣg+ band system,” Mol. Phys. 104, 2641–2652 (2006).
[CrossRef]

Nature (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[CrossRef]

Opt. Commun. (1)

J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?,” Opt. Commun. 74, 87–92 (1989).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of I2127 at 5145 Å: a test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20, 254–268 (1979).
[CrossRef]

Phys. Rev. Lett. (3)

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and M. Inguscio, “Absolute frequency measurements of the 2S31→2P0,1,23 atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, and T. W. Hänsch, “Hydrogen-deuterium 1S–2S isotope shift and the structure of the deuteron,” Phys. Rev. Lett. 80, 468–471 (1998).
[CrossRef]

Z.-C. Yan, W. Nörtershäuser, and G. W. F. Drake, “High precision atomic theory for Li and Be+: QED shifts and isotope shifts,” Phys. Rev. Lett. 100, 243002 (2008).
[CrossRef]

Other (8)

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14000 cm−1–15600  cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14800 cm−1–20000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1978).

S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule de l’iode 11000 cm−1–14000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 19700 cm−1–20035 cm−1 (Laboratoire Aimé Cotton CNRS II, 1983).

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule de l’iode 14800–20000 cm−1 Complément : Identification des transitions du systéme (B–X) assignments of the (B(I2)–X) iodine lines (Laboratoire Aimé Cotton CNRS II, 1986).

S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule de l’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).

H. Katô, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15000 to 19000 cm−1(Japan Society for the Promotion of Science, 2000).

“IodineSpec5,” http://www.iqo.uni-hannover.de .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. OI, optical isolator; λ/2, half-wave plate; PBS, polarizing beam splitter; BS, beam splitter; F–P cavity, Fabry–Perot cavity; PD, photodiode; PI, electronic servo loop; EOM, electro-optic modulator; AOM, acousto-optic modulator.

Fig. 2.
Fig. 2.

Injection-locked laser system for measuring the absolute frequency. λ/2, half-wave plate; PBS, polarizing beam splitter; BS, beam splitter; F–P cavity, Fabry–Perot cavity; and PD, photodiode. The F–P cavity is used to monitor the mode structure of the slave laser and ensure it is injection-locked to the master laser.

Fig. 3.
Fig. 3.

Hyperfine structure pattern of the R(78) 4–6 line. The S/N of the a1 component is about 70.

Fig. 4.
Fig. 4.

Fractional Allan deviation of the laser frequency. The system reaches its best stability at an averaging time of 3 s.

Fig. 5.
Fig. 5.

Measurements at the iodine vapor pressure of 26.9 Pa. Each data point represents the mean value of 600 measurements. The standard deviation of the measurements divided by the square root of 600 is assigned as the error bar of each point. The results for the three transitions a1, a10, and a15 are 446,806,191,649(23), 446,806,778,709(33), and 446,807,072,397(22) kHz, respectively.

Fig. 6.
Fig. 6.

Pressure shift of the transition frequency for the a1 component. The negative slope shows that the interaction due to collision is attractive.

Tables (2)

Tables Icon

Table 1. Sources of Uncertainties (kHz)

Tables Icon

Table 2. Results and Comparison to the Calculated Values (kHz); Uncertainty of the Calculated Value is Approximately 30 MHz as Reported in the IodineSpec 5 Program

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

log(P)=3512.830T2.013·log(T)+18.37971,
fiodine=fpump+fprobe2=Nfrep±foffset+fbeat+fAOM2,

Metrics