Abstract

An in-fiber quasi-Michelson interferometer working on reflection is proposed and experimentally demonstrated. The device consists of a short section of multimode fiber (MMF) followed by a single-mode fiber (SMF) whose end face is terminated by a thick silver film. The MMF excites cladding modes into downstream SMF via the mismatched-core splicing interface. The core–cladding modes are reflected back by the silver film and recoupled to the core of lead-in SMF through the MMF. A well-defined interference pattern is obtained as the result of core–cladding mode interference. A configuration with a 40 mm pigtail SMF at a wavelength of 1528 nm exhibits a water level sensitivity of 49.8pm/mm and a liquid refractive index sensitivity of 574.6(pm/mm)/RIU (refractive index unit). In addition, the selected dip provides a considered temperature sensitivity of 61.26pm/°C and a high displacement sensitivity of 1018.6pm/mm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  3. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18, 230–235 (2000).
    [CrossRef]
  4. M. Jiang, A. P. Zhang, Y.-C. Wang, H.-Y. Tam, and S. He, “Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror,” Opt. Express 17, 17976–17982 (2009).
    [CrossRef]
  5. J. Wang, K. Zheng, J. Peng, L. Liu, J. Li, and S. Jian, “Theory and experiment of a fiber loop mirror filter of two-stage polarization-maintaining fibers and polarization controllers for multiwavelength fiber ring laser,” Opt. Express 17, 10573–10583 (2009).
    [CrossRef]
  6. G. Sun, D. S. Moon, and Y. Chung, “Simultaneous temperature and strain measurement using two types of high-birefringence fibers in Sagnac loop mirror,” IEEE Photon. Technol. Lett. 19, 2027–2029 (2007).
    [CrossRef]
  7. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375 (2008).
    [CrossRef]
  8. Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-sensitive fiber-optic refractometer based on a core-diameter-mismatch Mach–Zehnder interferometer,” IEEE Sens. J. 12, 2501–2505 (2012).
    [CrossRef]
  9. J. Jiang, T. Liu, Y. Zhang, L. Liu, Y. Zha, F. Zhang, Y. Wang, and P. Long, “Parallel demodulation system and signal-processing method for extrinsic Fabry–Perot interferometer and fiber Bragg grating sensors,” Opt. Lett. 30, 604–606 (2005).
    [CrossRef]
  10. F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Fabry–Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Opt. Lett. 36, 4191–4193 (2011).
    [CrossRef]
  11. D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668–1672 (2008).
    [CrossRef]
  12. L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31, 2692–2694 (2006).
    [CrossRef]
  13. G. Lv, H. Ye, J. Li, X. Sun, and X. Zhang, “Hybrid optical spectral bistability in fiber Michelson interferometer by use of a tunable fiber laser,” IEEE Photon. Technol. Lett. 17, 1061–1063 (2005).
    [CrossRef]
  14. Z. Liu, F. Bo, L. Wang, F. Tian, and L. Yuan, “Integrated fiber Michelson interferometer based on poled hollow twin-core fiber,” Opt. Lett. 36, 2435–2437 (2011).
    [CrossRef]
  15. N.-K. Chen, K.-Y. Lu, J.-T. Shy, and C. Lin, “Broadband micro-Michelson interferometer with multi-optical-path beating using a sphered-end hollow fiber,” Opt. Lett. 36, 2074–2076 (2011).
    [CrossRef]
  16. F. Peng, J. Yang, X. Li, Y. Yuan, B. Wu, A. Zhou, and L. Yuan, “In-fiber integrated accelerometer,” Opt. Lett. 36, 2056–2058 (2011).
    [CrossRef]
  17. Q. Wu, Y. Ma, J. Yuan, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “Evanescent field coupling between two parallel close contact SMS fiber structures,” Opt. Express 20, 3098–3109 (2012).
    [CrossRef]
  18. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer—analysis and experiment,” Opt. Express 19, 7937–7944 (2011).
    [CrossRef]
  19. Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23, 130–132 (2011).
    [CrossRef]
  20. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006).
    [CrossRef]
  21. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry–Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16, 2252–2263 (2008).
    [CrossRef]
  22. Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach–Zehnder refractive index sensor,” Opt. Express 18, 8135–8143 (2010).
    [CrossRef]
  23. Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33, 1105–1107 (2008).
    [CrossRef]
  24. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
    [CrossRef]
  25. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach–Zehnder interferometers for sensing applications,” Opt. Express 20, 11109–11120 (2012).
    [CrossRef]

2012

2011

2010

2009

2008

2007

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
[CrossRef]

G. Sun, D. S. Moon, and Y. Chung, “Simultaneous temperature and strain measurement using two types of high-birefringence fibers in Sagnac loop mirror,” IEEE Photon. Technol. Lett. 19, 2027–2029 (2007).
[CrossRef]

2006

2005

G. Lv, H. Ye, J. Li, X. Sun, and X. Zhang, “Hybrid optical spectral bistability in fiber Michelson interferometer by use of a tunable fiber laser,” IEEE Photon. Technol. Lett. 17, 1061–1063 (2005).
[CrossRef]

J. Jiang, T. Liu, Y. Zhang, L. Liu, Y. Zha, F. Zhang, Y. Wang, and P. Long, “Parallel demodulation system and signal-processing method for extrinsic Fabry–Perot interferometer and fiber Bragg grating sensors,” Opt. Lett. 30, 604–606 (2005).
[CrossRef]

2000

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Bao, X.

Bo, F.

Bouwmans, G.

Chen, L.

Chen, N.-K.

Chiang, K. S.

Choi, H. Y.

Chung, Y.

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375 (2008).
[CrossRef]

G. Sun, D. S. Moon, and Y. Chung, “Simultaneous temperature and strain measurement using two types of high-birefringence fibers in Sagnac loop mirror,” IEEE Photon. Technol. Lett. 19, 2027–2029 (2007).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Djambova, T. V.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Farrell, G.

Favero, F. C.

Feng, Z.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-sensitive fiber-optic refractometer based on a core-diameter-mismatch Mach–Zehnder interferometer,” IEEE Sens. J. 12, 2501–2505 (2012).
[CrossRef]

Finazzi, V.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Gu, X.

Gupta, S.

Harris, E.

Hatta, A. M.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23, 130–132 (2011).
[CrossRef]

He, S.

Hu, M.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-sensitive fiber-optic refractometer based on a core-diameter-mismatch Mach–Zehnder interferometer,” IEEE Sens. J. 12, 2501–2505 (2012).
[CrossRef]

Hwang, D.

Jian, S.

Jiang, J.

Jiang, M.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kim, M. J.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lee, B. H.

Li, J.

J. Wang, K. Zheng, J. Peng, L. Liu, J. Li, and S. Jian, “Theory and experiment of a fiber loop mirror filter of two-stage polarization-maintaining fibers and polarization controllers for multiwavelength fiber ring laser,” Opt. Express 17, 10573–10583 (2009).
[CrossRef]

G. Lv, H. Ye, J. Li, X. Sun, and X. Zhang, “Hybrid optical spectral bistability in fiber Michelson interferometer by use of a tunable fiber laser,” IEEE Photon. Technol. Lett. 17, 1061–1063 (2005).
[CrossRef]

Li, L.

Li, X.

Li, Y.

Liao, X.

Lin, C.

Lit, J. W. Y.

Liu, D.

Liu, L.

Liu, T.

Liu, W. J.

Liu, W.-K.

Liu, Y.

Liu, Z.

Long, P.

Loock, H.-P.

Lu, K.-Y.

Lv, G.

G. Lv, H. Ye, J. Li, X. Sun, and X. Zhang, “Hybrid optical spectral bistability in fiber Michelson interferometer by use of a tunable fiber laser,” IEEE Photon. Technol. Lett. 17, 1061–1063 (2005).
[CrossRef]

Ma, Y.

Mizunami, T.

Mohammed, W. S.

Moon, D. S.

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375 (2008).
[CrossRef]

G. Sun, D. S. Moon, and Y. Chung, “Simultaneous temperature and strain measurement using two types of high-birefringence fibers in Sagnac loop mirror,” IEEE Photon. Technol. Lett. 19, 2027–2029 (2007).
[CrossRef]

Moon, S.

Nguyen, L. V.

Niiho, T.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Peng, F.

Peng, J.

Pruneri, V.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Qiao, X.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-sensitive fiber-optic refractometer based on a core-diameter-mismatch Mach–Zehnder interferometer,” IEEE Sens. J. 12, 2501–2505 (2012).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Rong, Q.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-sensitive fiber-optic refractometer based on a core-diameter-mismatch Mach–Zehnder interferometer,” IEEE Sens. J. 12, 2501–2505 (2012).
[CrossRef]

Semenova, Y.

Shy, J.-T.

Smith, P. W. E.

Sun, G.

G. Sun, D. S. Moon, and Y. Chung, “Simultaneous temperature and strain measurement using two types of high-birefringence fibers in Sagnac loop mirror,” IEEE Photon. Technol. Lett. 19, 2027–2029 (2007).
[CrossRef]

Sun, H.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-sensitive fiber-optic refractometer based on a core-diameter-mismatch Mach–Zehnder interferometer,” IEEE Sens. J. 12, 2501–2505 (2012).
[CrossRef]

Sun, J.

Sun, X.

G. Lv, H. Ye, J. Li, X. Sun, and X. Zhang, “Hybrid optical spectral bistability in fiber Michelson interferometer by use of a tunable fiber laser,” IEEE Photon. Technol. Lett. 17, 1061–1063 (2005).
[CrossRef]

Tam, H.-Y.

Tian, F.

Tian, Z.

Villatoro, J.

Wang, J.

Wang, L.

Wang, P.

Wang, R.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-sensitive fiber-optic refractometer based on a core-diameter-mismatch Mach–Zehnder interferometer,” IEEE Sens. J. 12, 2501–2505 (2012).
[CrossRef]

Wang, Y.

Wang, Y.-C.

Wei, L.

Wu, B.

Wu, Q.

Xia, L.

Xie, Z.

Yam, S. S.-H.

Yang, J.

Ye, H.

G. Lv, H. Ye, J. Li, X. Sun, and X. Zhang, “Hybrid optical spectral bistability in fiber Michelson interferometer by use of a tunable fiber laser,” IEEE Photon. Technol. Lett. 17, 1061–1063 (2005).
[CrossRef]

Yu, C.

Yuan, J.

Yuan, L.

Yuan, Y.

Zha, Y.

Zhang, A. P.

Zhang, F.

Zhang, X.

G. Lv, H. Ye, J. Li, X. Sun, and X. Zhang, “Hybrid optical spectral bistability in fiber Michelson interferometer by use of a tunable fiber laser,” IEEE Photon. Technol. Lett. 17, 1061–1063 (2005).
[CrossRef]

Zhang, Y.

Zheng, K.

Zhou, A.

Zhou, D.-P.

Appl. Opt.

IEEE Photon. Technol. Lett.

G. Lv, H. Ye, J. Li, X. Sun, and X. Zhang, “Hybrid optical spectral bistability in fiber Michelson interferometer by use of a tunable fiber laser,” IEEE Photon. Technol. Lett. 17, 1061–1063 (2005).
[CrossRef]

G. Sun, D. S. Moon, and Y. Chung, “Simultaneous temperature and strain measurement using two types of high-birefringence fibers in Sagnac loop mirror,” IEEE Photon. Technol. Lett. 19, 2027–2029 (2007).
[CrossRef]

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23, 130–132 (2011).
[CrossRef]

IEEE Sens. J.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-sensitive fiber-optic refractometer based on a core-diameter-mismatch Mach–Zehnder interferometer,” IEEE Sens. J. 12, 2501–2505 (2012).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18, 230–235 (2000).
[CrossRef]

Opt. Express

M. Jiang, A. P. Zhang, Y.-C. Wang, H.-Y. Tam, and S. He, “Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror,” Opt. Express 17, 17976–17982 (2009).
[CrossRef]

J. Wang, K. Zheng, J. Peng, L. Liu, J. Li, and S. Jian, “Theory and experiment of a fiber loop mirror filter of two-stage polarization-maintaining fibers and polarization controllers for multiwavelength fiber ring laser,” Opt. Express 17, 10573–10583 (2009).
[CrossRef]

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375 (2008).
[CrossRef]

Q. Wu, Y. Ma, J. Yuan, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “Evanescent field coupling between two parallel close contact SMS fiber structures,” Opt. Express 20, 3098–3109 (2012).
[CrossRef]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer—analysis and experiment,” Opt. Express 19, 7937–7944 (2011).
[CrossRef]

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry–Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16, 2252–2263 (2008).
[CrossRef]

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach–Zehnder refractive index sensor,” Opt. Express 18, 8135–8143 (2010).
[CrossRef]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
[CrossRef]

L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach–Zehnder interferometers for sensing applications,” Opt. Express 20, 11109–11120 (2012).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of IFQMI.

Fig. 2.
Fig. 2.

Measured reflection spectrum of the IFQMI. The upper is with silver film and the bottom is without silver film.

Fig. 3.
Fig. 3.

Measured reflection spectra of IFQMIs with the different pigtail SMF lengths of 30, 40, and 50 mm.

Fig. 4.
Fig. 4.

Spatial spectra of the IFQMI configurations with different lengths of SMF. The left is L=30mm, the middle is L=40mm, and the right is L=50mm.

Fig. 5.
Fig. 5.

Schematic diagram of the experimental setup for the liquid level measurement.

Fig. 6.
Fig. 6.

Experimental measurements of the IFQMI. L=30mm: (a) the spectra are from 0 to 28 mm with the interval of 4 mm, (b) wavelength shift versus liquid level, L=40mm; (c) the square is n=1.3341, the circle is n=1.3672, and the triangle is n=1.4018, (d) sensitivity to liquid level versus liquid RI.

Fig. 7.
Fig. 7.

Experimental measurements of the IFQMI. (a) The spectra are from 35°C to 105°C with the interval of 10°C and (b) wavelength shift versus temperature up.

Fig. 8.
Fig. 8.

Schematic diagram of the experimental setup for the displacement measurement.

Fig. 9.
Fig. 9.

Experimental measurements of the IFQMI. (a) The spectra are from 0.0 to 1.4 mm with the interval of 0.2 mm and (b) wavelength shift versus displacement increase.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I=Icore+mIcladm+m2Icore·Icladm·cosΦm,
Φm=4π(neffcoreneffclad,m)Lλm=4πΔneffmLλm,
λm=4πΔneffmL(2m+1)π,
Δλm=4neffmL(2m+1)(2m1)λm2ΔneffmL.
λm=4πΔneffm(LLn)(2m+1)π+4πΔneffnmLn(2m+1)π,
δλm=4πL(2m+1)πδneffm+4πΔneffm(2m+1)πδL.
δλm=4πΔneffmL(2m+1)π(δneffmΔneffm+δLL).

Metrics