Abstract

An etching method for preparing high-quality fiber-optic sensors using a buffered etchant with ultrasonic agitation is proposed. The effects of etching conditions on the etch rate and surface morphology of the etched fibers are investigated. The effect of surface roughness is discussed on the fibers’ optical properties. Linear etching behavior and a smooth fiber surface can be repeatedly obtained by adjusting the ultrasonic power and etchant pH. The fibers’ spectral quality is improved as the ratio of the pit depth to size decreases, and the fibers with smooth surfaces are more sensitive to a bacterial suspension than those with rough surfaces.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. John, A. Kishen, L. C. Sing, and A. Asundi, “Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor,” Appl. Opt. 41, 7334–7338 (2002).
    [CrossRef]
  2. R. Aneesh and S. K. Khijwania, “Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range,” Appl. Opt. 50, 5310–5314 (2011).
    [CrossRef]
  3. A. Messica, A. Greenstein, and A. Katzir, “Theory of fiber-optic, evanescent-wave spectroscopy and sensors,” Appl. Opt. 35, 2274–2284 (1996).
    [CrossRef]
  4. V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuat. A 138, 248–260 (2007).
    [CrossRef]
  5. S. J. Qiu, Y. Chen, J. L. Kou, F. Xu, and Y. Q. Lu, “Miniature tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching,” Appl. Opt. 50, 4328–4332 (2011).
    [CrossRef]
  6. K. B. Harpreet, B. Zourab, M. D. Nicoleta, F. C. Stephen, and S. Fotios, “Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification,” Appl. Opt. 51, 2282–2287 (2012).
    [CrossRef]
  7. N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
    [CrossRef]
  8. J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
    [CrossRef]
  9. C. R. Yang, P. Y. Chen, Y. C. Chiou, and R. T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens Actuat. A 119, 263–270 (2005).
    [CrossRef]
  10. L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
    [CrossRef]
  11. F. Liu, C. S. Roper, J. Chu, C. Carraro, and R. Maboudian, “Corrosion mechanism and surface passivation strategies of polycrystalline silicon electrodes,” Sens. Actuat. A 166, 201–206 (2011).
    [CrossRef]
  12. X. P. Chen, Fiber Optic Pressure Sensor Fabrication Using MEMS Technology (Virginia Tech., 2003), pp. 47–48.
  13. N. B. Zhong, L. Qiang, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Chin. Opt. Precision Eng. 20, 988–995 (2012).
    [CrossRef]
  14. M. S. Kulkarni and H. F. Erk, “Acid-based etching of silicon wafers: mass-transfer and kinetic effects,” J. Electrochem. Soc. 147, 176–188 (2000).
    [CrossRef]
  15. Y. Osano and K. Ono, “An atomic scale model of multilayer surface reactions and the feature profile evolution during plasma etching,” Jpn. J. Appl. Phys. 44, 8650–8660 (2005).
    [CrossRef]
  16. D. R. Lide, Handbook of Chemistry and Physics, 82nd ed. (CRC, 2001), pp. 757–758.
  17. K. D. Demadis, M. Somara, and E. Mavredaki, “Additive-driven dissolution enhancement of colloidal pilica. Part 3. Fluorine-containing additives,” Ind. Eng. Chem. Res. 51, 2952–2962 (2012).
    [CrossRef]
  18. C. G. Zoski, Handbook of Electrochemistry (Elsevier, 2007), pp. 417–418.
  19. X. Y. Zhuang, Y. H. Wu, S. R. Wang, P. Zhang, and Y. S. Liu, “Research on the fiber optical evanescent field sensor based on micro fabrication and the effect of fiber length on its properties,” Acta Phys. Sin. 58, 2501–2506 (2009).
  20. Y. Z. Wang, Q. Liao, X. Zhu, X. Tian, and C. Zhang, “Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor,” Bioresour. Technol. 101, 4034–4041 (2010).
    [CrossRef]

2012 (3)

N. B. Zhong, L. Qiang, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Chin. Opt. Precision Eng. 20, 988–995 (2012).
[CrossRef]

K. D. Demadis, M. Somara, and E. Mavredaki, “Additive-driven dissolution enhancement of colloidal pilica. Part 3. Fluorine-containing additives,” Ind. Eng. Chem. Res. 51, 2952–2962 (2012).
[CrossRef]

K. B. Harpreet, B. Zourab, M. D. Nicoleta, F. C. Stephen, and S. Fotios, “Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification,” Appl. Opt. 51, 2282–2287 (2012).
[CrossRef]

2011 (5)

S. J. Qiu, Y. Chen, J. L. Kou, F. Xu, and Y. Q. Lu, “Miniature tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching,” Appl. Opt. 50, 4328–4332 (2011).
[CrossRef]

R. Aneesh and S. K. Khijwania, “Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range,” Appl. Opt. 50, 5310–5314 (2011).
[CrossRef]

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

F. Liu, C. S. Roper, J. Chu, C. Carraro, and R. Maboudian, “Corrosion mechanism and surface passivation strategies of polycrystalline silicon electrodes,” Sens. Actuat. A 166, 201–206 (2011).
[CrossRef]

2010 (1)

Y. Z. Wang, Q. Liao, X. Zhu, X. Tian, and C. Zhang, “Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor,” Bioresour. Technol. 101, 4034–4041 (2010).
[CrossRef]

2009 (1)

X. Y. Zhuang, Y. H. Wu, S. R. Wang, P. Zhang, and Y. S. Liu, “Research on the fiber optical evanescent field sensor based on micro fabrication and the effect of fiber length on its properties,” Acta Phys. Sin. 58, 2501–2506 (2009).

2007 (1)

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuat. A 138, 248–260 (2007).
[CrossRef]

2005 (2)

C. R. Yang, P. Y. Chen, Y. C. Chiou, and R. T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens Actuat. A 119, 263–270 (2005).
[CrossRef]

Y. Osano and K. Ono, “An atomic scale model of multilayer surface reactions and the feature profile evolution during plasma etching,” Jpn. J. Appl. Phys. 44, 8650–8660 (2005).
[CrossRef]

2002 (2)

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
[CrossRef]

M. S. John, A. Kishen, L. C. Sing, and A. Asundi, “Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor,” Appl. Opt. 41, 7334–7338 (2002).
[CrossRef]

2000 (1)

M. S. Kulkarni and H. F. Erk, “Acid-based etching of silicon wafers: mass-transfer and kinetic effects,” J. Electrochem. Soc. 147, 176–188 (2000).
[CrossRef]

1996 (1)

Aneesh, R.

Asundi, A.

Badcock, R. A.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuat. A 138, 248–260 (2007).
[CrossRef]

Bai, X.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Benito-Peña, E.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Carraro, C.

F. Liu, C. S. Roper, J. Chu, C. Carraro, and R. Maboudian, “Corrosion mechanism and surface passivation strategies of polycrystalline silicon electrodes,” Sens. Actuat. A 166, 201–206 (2011).
[CrossRef]

Chen, J.

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
[CrossRef]

Chen, P. Y.

C. R. Yang, P. Y. Chen, Y. C. Chiou, and R. T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens Actuat. A 119, 263–270 (2005).
[CrossRef]

Chen, R.

N. B. Zhong, L. Qiang, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Chin. Opt. Precision Eng. 20, 988–995 (2012).
[CrossRef]

Chen, X. P.

X. P. Chen, Fiber Optic Pressure Sensor Fabrication Using MEMS Technology (Virginia Tech., 2003), pp. 47–48.

Chen, Y.

S. J. Qiu, Y. Chen, J. L. Kou, F. Xu, and Y. Q. Lu, “Miniature tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching,” Appl. Opt. 50, 4328–4332 (2011).
[CrossRef]

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Chiou, Y. C.

C. R. Yang, P. Y. Chen, Y. C. Chiou, and R. T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens Actuat. A 119, 263–270 (2005).
[CrossRef]

Chu, J.

F. Liu, C. S. Roper, J. Chu, C. Carraro, and R. Maboudian, “Corrosion mechanism and surface passivation strategies of polycrystalline silicon electrodes,” Sens. Actuat. A 166, 201–206 (2011).
[CrossRef]

Demadis, K. D.

K. D. Demadis, M. Somara, and E. Mavredaki, “Additive-driven dissolution enhancement of colloidal pilica. Part 3. Fluorine-containing additives,” Ind. Eng. Chem. Res. 51, 2952–2962 (2012).
[CrossRef]

Erk, H. F.

M. S. Kulkarni and H. F. Erk, “Acid-based etching of silicon wafers: mass-transfer and kinetic effects,” J. Electrochem. Soc. 147, 176–188 (2000).
[CrossRef]

Esteban, Ó.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Fang, H. J.

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
[CrossRef]

Feng, H. H.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Fernando, G. F.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuat. A 138, 248–260 (2007).
[CrossRef]

Fotios, S.

González-Cano, A.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Greenstein, A.

Harpreet, K. B.

Herrera, N. D.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Jiang, Q. S.

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
[CrossRef]

Jiao, Z. F.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Jin, Y.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

John, M. S.

Katzir, A.

Khijwania, S. K.

Kishen, A.

Kou, J. L.

Kulkarni, M. S.

M. S. Kulkarni and H. F. Erk, “Acid-based etching of silicon wafers: mass-transfer and kinetic effects,” J. Electrochem. Soc. 147, 176–188 (2000).
[CrossRef]

Lee, R. T.

C. R. Yang, P. Y. Chen, Y. C. Chiou, and R. T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens Actuat. A 119, 263–270 (2005).
[CrossRef]

Li, Z. J.

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
[CrossRef]

Liao, Q.

Y. Z. Wang, Q. Liao, X. Zhu, X. Tian, and C. Zhang, “Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor,” Bioresour. Technol. 101, 4034–4041 (2010).
[CrossRef]

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics, 82nd ed. (CRC, 2001), pp. 757–758.

Liu, D. L.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Liu, F.

F. Liu, C. S. Roper, J. Chu, C. Carraro, and R. Maboudian, “Corrosion mechanism and surface passivation strategies of polycrystalline silicon electrodes,” Sens. Actuat. A 166, 201–206 (2011).
[CrossRef]

Liu, L. T.

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
[CrossRef]

Liu, Y. S.

X. Y. Zhuang, Y. H. Wu, S. R. Wang, P. Zhang, and Y. S. Liu, “Research on the fiber optical evanescent field sensor based on micro fabrication and the effect of fiber length on its properties,” Acta Phys. Sin. 58, 2501–2506 (2009).

Liu, Y. X.

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
[CrossRef]

Lu, Y. Q.

Maboudian, R.

F. Liu, C. S. Roper, J. Chu, C. Carraro, and R. Maboudian, “Corrosion mechanism and surface passivation strategies of polycrystalline silicon electrodes,” Sens. Actuat. A 166, 201–206 (2011).
[CrossRef]

Machavaram, V. R.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuat. A 138, 248–260 (2007).
[CrossRef]

Mavredaki, E.

K. D. Demadis, M. Somara, and E. Mavredaki, “Additive-driven dissolution enhancement of colloidal pilica. Part 3. Fluorine-containing additives,” Ind. Eng. Chem. Res. 51, 2952–2962 (2012).
[CrossRef]

Messica, A.

Navarrete, M. C.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Nicoleta, M. D.

Nie, E. Y.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Ono, K.

Y. Osano and K. Ono, “An atomic scale model of multilayer surface reactions and the feature profile evolution during plasma etching,” Jpn. J. Appl. Phys. 44, 8650–8660 (2005).
[CrossRef]

Orellana, G.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Osano, Y.

Y. Osano and K. Ono, “An atomic scale model of multilayer surface reactions and the feature profile evolution during plasma etching,” Jpn. J. Appl. Phys. 44, 8650–8660 (2005).
[CrossRef]

Qiang, L.

N. B. Zhong, L. Qiang, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Chin. Opt. Precision Eng. 20, 988–995 (2012).
[CrossRef]

Qiu, S. J.

Roper, C. S.

F. Liu, C. S. Roper, J. Chu, C. Carraro, and R. Maboudian, “Corrosion mechanism and surface passivation strategies of polycrystalline silicon electrodes,” Sens. Actuat. A 166, 201–206 (2011).
[CrossRef]

Sing, L. C.

Somara, M.

K. D. Demadis, M. Somara, and E. Mavredaki, “Additive-driven dissolution enhancement of colloidal pilica. Part 3. Fluorine-containing additives,” Ind. Eng. Chem. Res. 51, 2952–2962 (2012).
[CrossRef]

Stephen, F. C.

Sun, C. L.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Sun, X. S.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Tan, Z. M.

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
[CrossRef]

Tian, X.

Y. Z. Wang, Q. Liao, X. Zhu, X. Tian, and C. Zhang, “Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor,” Bioresour. Technol. 101, 4034–4041 (2010).
[CrossRef]

Wang, S. R.

X. Y. Zhuang, Y. H. Wu, S. R. Wang, P. Zhang, and Y. S. Liu, “Research on the fiber optical evanescent field sensor based on micro fabrication and the effect of fiber length on its properties,” Acta Phys. Sin. 58, 2501–2506 (2009).

Wang, Y. Z.

N. B. Zhong, L. Qiang, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Chin. Opt. Precision Eng. 20, 988–995 (2012).
[CrossRef]

Y. Z. Wang, Q. Liao, X. Zhu, X. Tian, and C. Zhang, “Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor,” Bioresour. Technol. 101, 4034–4041 (2010).
[CrossRef]

Wu, Y. H.

X. Y. Zhuang, Y. H. Wu, S. R. Wang, P. Zhang, and Y. S. Liu, “Research on the fiber optical evanescent field sensor based on micro fabrication and the effect of fiber length on its properties,” Acta Phys. Sin. 58, 2501–2506 (2009).

Xu, F.

Xu, J. J.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Xu, Y.

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
[CrossRef]

Yang, C. R.

C. R. Yang, P. Y. Chen, Y. C. Chiou, and R. T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens Actuat. A 119, 263–270 (2005).
[CrossRef]

Yang, Y. M.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Yi, L.

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Zhang, C.

Y. Z. Wang, Q. Liao, X. Zhu, X. Tian, and C. Zhang, “Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor,” Bioresour. Technol. 101, 4034–4041 (2010).
[CrossRef]

Zhang, P.

X. Y. Zhuang, Y. H. Wu, S. R. Wang, P. Zhang, and Y. S. Liu, “Research on the fiber optical evanescent field sensor based on micro fabrication and the effect of fiber length on its properties,” Acta Phys. Sin. 58, 2501–2506 (2009).

Zhong, N. B.

N. B. Zhong, L. Qiang, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Chin. Opt. Precision Eng. 20, 988–995 (2012).
[CrossRef]

Zhu, X.

Y. Z. Wang, Q. Liao, X. Zhu, X. Tian, and C. Zhang, “Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor,” Bioresour. Technol. 101, 4034–4041 (2010).
[CrossRef]

Zhuang, X. Y.

X. Y. Zhuang, Y. H. Wu, S. R. Wang, P. Zhang, and Y. S. Liu, “Research on the fiber optical evanescent field sensor based on micro fabrication and the effect of fiber length on its properties,” Acta Phys. Sin. 58, 2501–2506 (2009).

Zoski, C. G.

C. G. Zoski, Handbook of Electrochemistry (Elsevier, 2007), pp. 417–418.

Zourab, B.

Acta Phys. Sin. (1)

X. Y. Zhuang, Y. H. Wu, S. R. Wang, P. Zhang, and Y. S. Liu, “Research on the fiber optical evanescent field sensor based on micro fabrication and the effect of fiber length on its properties,” Acta Phys. Sin. 58, 2501–2506 (2009).

Appl. Opt. (5)

Appl. Surf. Sci. (1)

L. Yi, X. Bai, Y. M. Yang, E. Y. Nie, D. L. Liu, C. L. Sun, H. H. Feng, J. J. Xu, Y. Chen, Y. Jin, Z. F. Jiao, and X. S. Sun, “Preparation of silica nanowires using porous silicon as Si source,” Appl. Surf. Sci. 258, 212–217 (2011).
[CrossRef]

Bioresour. Technol. (1)

Y. Z. Wang, Q. Liao, X. Zhu, X. Tian, and C. Zhang, “Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor,” Bioresour. Technol. 101, 4034–4041 (2010).
[CrossRef]

Chin. Opt. Precision Eng. (1)

N. B. Zhong, L. Qiang, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Chin. Opt. Precision Eng. 20, 988–995 (2012).
[CrossRef]

Ind. Eng. Chem. Res. (1)

K. D. Demadis, M. Somara, and E. Mavredaki, “Additive-driven dissolution enhancement of colloidal pilica. Part 3. Fluorine-containing additives,” Ind. Eng. Chem. Res. 51, 2952–2962 (2012).
[CrossRef]

J. Electrochem. Soc. (1)

M. S. Kulkarni and H. F. Erk, “Acid-based etching of silicon wafers: mass-transfer and kinetic effects,” J. Electrochem. Soc. 147, 176–188 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Osano and K. Ono, “An atomic scale model of multilayer surface reactions and the feature profile evolution during plasma etching,” Jpn. J. Appl. Phys. 44, 8650–8660 (2005).
[CrossRef]

Opt. Lasers Eng. (1)

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Lasers Eng. 49, 1065–1068 (2011).
[CrossRef]

Sens Actuat. A (1)

C. R. Yang, P. Y. Chen, Y. C. Chiou, and R. T. Lee, “Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution,” Sens Actuat. A 119, 263–270 (2005).
[CrossRef]

Sens. Actuat. A (3)

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang, H. J. Fang, Y. Xu, and Y. X. Liu, “Study of anisotropic etching of (100) Si with ultrasonic agitation,” Sens. Actuat. A 96, 152–156(2002).
[CrossRef]

F. Liu, C. S. Roper, J. Chu, C. Carraro, and R. Maboudian, “Corrosion mechanism and surface passivation strategies of polycrystalline silicon electrodes,” Sens. Actuat. A 166, 201–206 (2011).
[CrossRef]

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuat. A 138, 248–260 (2007).
[CrossRef]

Other (3)

C. G. Zoski, Handbook of Electrochemistry (Elsevier, 2007), pp. 417–418.

X. P. Chen, Fiber Optic Pressure Sensor Fabrication Using MEMS Technology (Virginia Tech., 2003), pp. 47–48.

D. R. Lide, Handbook of Chemistry and Physics, 82nd ed. (CRC, 2001), pp. 757–758.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Scanning electron microscopy images of etched fiber surface morphology at a magnification of 1000 × ( 0.15 mol L 1 HFA solution, 40°C).

Fig. 2.
Fig. 2.

Schematic representation of roughness (CP, corrosion products; FS, fiber surface).

Fig. 3.
Fig. 3.

Etch rate in HFA as a function of fiber diameter ( 0.15 mol L 1 , 40°C).

Fig. 4.
Fig. 4.

SEM images (3.00 KX) of etched fiber surfaces finished in HFA ( 0.15 mol L 1 , 40°C).

Fig. 5.
Fig. 5.

Etch rate/relative growth rate of fibers as a function of HFA concentration (40°C, 165 W).

Fig. 6.
Fig. 6.

SEM images (3.00 KX) of etched fiber surfaces finished in HFA (40°C, 165 W).

Fig. 7.
Fig. 7.

Etch rate of fibers in BHFA solution as a function of fiber diameter (40°C, 165 W).

Fig. 8.
Fig. 8.

Etch rate of fibers in BHFA as a function of time at pH values from 4.77 to 5.7 (165 W, 40°C).

Fig. 9.
Fig. 9.

SEM images (3.00 KX) of fiber surfaces prepared in BHFA (40°C, 165 W).

Fig. 10.
Fig. 10.

Spectral transmission of the etched fibers.

Fig. 11.
Fig. 11.

Attenuation rate of light intensity as a function of biomass concentration.

Tables (2)

Tables Icon

Table 1. Experimental Operating Conditions

Tables Icon

Table 2. Average Pit Size ( Δ ), Average Pit Depth ( δ ), and Ratio 2 δ / Δ a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ = i = 1 N h i N and Δ = i = 1 N D i N ,
d h d τ = ( r p r v ) ,
r p = ( R v , j + R v , j R p , j + R p , j + R p , j ) r v ,
d h d τ = ( 1 R v , j + R v , j R p , j + R p , j + R p , j ) r v = ( 1 R o , v , j R o , p , j ) r v ,

Metrics